What is Root Locus? (Review)

- Consider a feedback system that has one parameter (gain) $K > 0$ to be designed.

- **Root locus** graphically shows how poles of the closed-loop system varies as K varies from 0 to infinity.

Characteristic equation & root locus

- **Characteristic equation**

$$1 + KL(s) = 0 \iff K = \frac{-1}{L(s)} \iff L(s) = \frac{-1}{K}$$

- **Root locus** is obtained by
 - for a fixed $K > 0$, finding roots of the characteristic equation, and
 - sweeping K over real positive numbers.

- A point s is on the root locus, if and only if $L(s)$ evaluated for that s is a negative real number.
Angle and magnitude conditions

- Characteristic eq. can be split into two conditions.
 - **Angle condition**
 \[\angle L(s) = 180^\circ \times (2k + 1), \ k = 0, \pm 1, \pm 2, \ldots \]
 - **Magnitude condition**
 \[|L(s)| = \frac{1}{K} \]
 For any point \(s \), this condition holds for some positive \(K \).

A simple example

\[L(s) = \frac{1}{s(s + 2)} \]

- Select a point \(s = -1+j \)
 \[L(s) = \frac{1}{(-1+j)(1+j)} = -\frac{1}{2} \]
 \[\angle L(s) = 180 \]
 \[s \text{ is on root locus.} \]
 \[K = \frac{1}{|L(s)|} = 2 \]

Root locus: Step 0

- **Root locus is symmetric w.r.t. the real axis.**
- Characteristic equation is an equation with real coefficients. Hence, if a complex number is a root, its complex conjugate is also a root.
- **The number of branches = order of \(L(s) \)**
 - If \(L(s) = n(s)/d(s) \), then Ch. eq. is \(d(s) + Kn(s) = 0 \), which has roots as many as the order of \(d(s) \).
- **Mark poles of \(L \) with “x” and zeros of \(L \) with “o”**.

\[L(s) = \frac{s - z_1}{(s - p_1)(s - p_2)} \]

Root locus: Step 1-1

- **RL includes all points on real axis to the left of an odd number of real poles/zeros.**
 - Test point
 \[\angle L(s) = \angle(s - z_1) - \angle(s - p_1) - \angle(s - p_2) \]
 \[\text{Not satisfy angle condition!} \]
 - \[\angle L(s) = 180 - \angle(s - z_1) - \angle(s - p_1) - \angle(s - p_2) \]
 \[\text{Satisfy angle condition!} \]
Root locus: Step 1-1 (cont’d)

- RL includes all points on real axis to the left of an odd number of real poles/zeros.

\[\ell L(s) = \ell (s - z_1) - \ell (s - p_1) - \ell (s - p_2) \]

\[\text{Not satisfy angle condition!} \]

\[\ell L(s) = \ell (s - z_1) - \ell (s - p_1) - \ell (s - p_2) \]

\[\text{Satisfy angle condition!} \]

Root locus: Step 1-2

- RL originates from the poles of \(L \), and terminates at the zeros of \(L \), including infinity zeros.

\[1 + K \frac{n(s)}{d(s)} = 0 \Leftrightarrow d(s) + K n(s) = 0 \Leftrightarrow \frac{1}{K} + \frac{n(s)}{d(s)} = 0 \]

\[K = 0 \quad \text{or} \quad K = \infty \]

\[d(s) = 0 \quad \frac{n(s)}{d(s)} = 0 \]

\(s \): Poles of \(L(s) \) \quad \(s \): Zeros of \(L(s) \)

Root locus: Step 2-1

- Number of asymptotes = relative degree \((r) \) of \(L \):
 \[r := \deg (\text{den}) - \deg (\text{num}) \]

- Angles of asymptotes are
 \[\frac{\pi}{r} \times (2k + 1), \ k = 0, 1, \ldots \]

\[r = 1 \quad r = 2 \quad r = 3 \quad r = 4 \]

\[\frac{\pi}{r} \] \quad \[\frac{\pi}{2r} \] \quad \[\frac{\pi}{3r} \] \quad \[\frac{\pi}{4r} \]

Root locus: Step 2-1 (cont’d)

- For a very large \(s \),
 \[L(s) = \frac{n_0 s^{n-r} + \cdots}{s^n + \cdots} \approx \frac{n_0}{s^r} \]

- Ch. eq is approximately
 \[1 + K L(s) = 0 \Rightarrow 1 + K \frac{n_0}{s^r} = 0 \Rightarrow s^r + K n_0 = 0 \]

\[\Rightarrow s^r = -K n_0 < 0 \quad (\text{we assume } n_0 > 0) \]

\[\Rightarrow \ell s^r = \pi \times (2k + 1), \ k = 0, 1, 2, \ldots \]

\[\Rightarrow \ell s = \frac{\pi}{r} \times (2k + 1), \ k = 0, 1, 2, \ldots \]
Root locus: Step 2-2

- **Intersections of asymptotes**
 \[
 \sum_{r} \text{pole} - \sum_{r} \text{zero}
 \]

- Proof for this is omitted and not required in this course.
- Interested students should read page 363 in the book by Dorf & Bishop.

Root locus: Step 3

- **Breakaway points are among roots of**
 \[
 \frac{dL(s)}{ds} = 0
 \]

Suppose that \(s=b\) is a breakaway point.

\[
\begin{align*}
 d(b) + Kn(b) &= 0 \\
 d'(b) + Kn'(b) &= 0 \\
 \Rightarrow d'(b) - \frac{d(b)}{n(b)}n'(b) &= 0
\end{align*}
\]

\[
\frac{dL(s)}{ds} \bigg|_{s=b} = \frac{n'(b)d(b) - n(b)d'(b)}{d(b)^2} = -\frac{n(b)}{d^2(b)} \left(d'(b) - \frac{d(b)}{n(b)}n'(b) \right) = 0
\]

Root locus: Step 4

- **RL departs from a pole** \(p_j\) with **angle of departure**
 \[
 \theta_d = \sum_{i} (p_j - z_i) - \sum_{i,i\neq j} (p_j - p_i) + 180
 \]

- **RL arrives at a zero** \(z_j\) with **angle of arrival**
 \[
 \theta_a = \sum_{i} (z_j - p_i) - \sum_{i,i\neq j} (z_j - z_i) + 180
 \]

 (No need to memorize these formula.)

Root locus: Step 4 (cont’d)

- **Sketch of proof for angle of departure**

 For \(s\) to be on root locus, due to **angle condition**
 \[
 \phi_1 - \theta_1 - \theta_2 = 180
 \]
 \[
 |s - p_1| \rightarrow 0
 \]
 \[
 \angle(p_1 - z_1) - \theta_1 - \angle(p_1 - p_2) = 180
 \]
Root locus: Step 4 (cont’d)

- Sketch of proof for **angle of arrival**

For s to be on root locus, due to **angle condition**

\[
\phi_1 + \phi_2 - \theta_1 - \theta_2 - \theta_3 = 180
\]

\[
|s - z_1| \to 0
\]

\[
\phi_1 + \angle(z_1 - z_2) - \sum_{i=1}^{3} \angle(z_1 - p_i) = 180
\]

Summary and exercises

- Sketch of proofs for root locus algorithm
- Next, we will move on to root locus applications to control examples.