ME451: Control Systems

Lecture 10
Routh-Hurwitz stability criterion

Dr. Jongeun Choi
Department of Mechanical Engineering
Michigan State University

Course roadmap

Modeling
- Laplace transform
- Transfer function
- Models for systems
 - electrical
 - mechanical
 - electromechanical
- Linearization

Analysis
- Time response
 - Transient
 - Steady state
- Frequency response
 - Bode plot
- Stability
 - Routh-Hurwitz
 - Nyquist

Design
- Design specs
- Root locus
- Frequency domain
- PID & Lead-lag
- Design examples

(Matlab simulations & laboratories)

Stability summary (review)

Let s_i be poles of rational G. Then, G is …

- (BIBO, asymptotically) stable if $\text{Re}(s_i)<0$ for all i.
- marginally stable if
 - $\text{Re}(s_i)<=0$ for all i, and
 - simple root for $\text{Re}(s_i)=0$
- unstable if it is neither stable nor marginally stable.

Routh-Hurwitz criterion

- This is for LTI systems with a polynomial denominator (without sin, cos, exponential etc.)
- It determines if all the roots of a polynomial
 - lie in the open LHP (left half-plane),
 - or equivalently, have negative real parts.
- It also determines the number of roots of a polynomial in the open RHP (right half-plane).
- It does NOT explicitly compute the roots.
- No proof is provided in any control textbook.
Polynomial and an assumption

- Consider a polynomial
 \[Q(s) = a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0 \]

- Assume \(a_0 \neq 0 \)
 - If this assumption does not hold, \(Q \) can be factored as
 \[Q(s) = s^m \left(\tilde{a}_{n-m} s^{n-m} + \cdots + \tilde{a}_1 s + \tilde{a}_0 \right) \]
 where \(\tilde{a}_0 \neq 0 \)
 - The following method applies to the polynomial \(\tilde{Q}(s) \)

Routh array

- From the given polynomial

Routh array

\(s^n \)	\(a_n \)	\(a_{n-2} \)	\(a_{n-4} \)	\(a_{n-6} \)	\(\cdots \)
\(s^{n-1} \)	\(a_{n-1} \)	\(a_{n-3} \)	\(a_{n-5} \)	\(a_{n-7} \)	\(\cdots \)
\(s^{n-2} \)	\(b_1 \)	\(b_2 \)	\(b_3 \)	\(b_4 \)	\(\cdots \)
\(s^{n-3} \)	\(c_1 \)	\(c_2 \)	\(c_3 \)	\(c_4 \)	\(\cdots \)
\(s^2 \)	\(k_1 \)	\(k_2 \)			
\(s^1 \)	\(l_1 \)				
\(s^0 \)	\(m_1 \)				

Routh array (How to compute the third row)

\[b_1 = \frac{a_{n-2} a_{n-1} - a_n a_{n-3}}{a_{n-1}} \]
\[b_2 = \frac{a_{n-4} a_{n-1} - a_n a_{n-5}}{a_{n-1}} \]

Routh array (How to compute the fourth row)

\[c_1 = \frac{a_{n-3} b_1 - a_{n-1} b_2}{b_1} \]
\[c_2 = \frac{a_{n-5} b_1 - a_{n-1} b_3}{b_1} \]

\[\vdots \]
Routh-Hurwitz criterion

The number of roots in the open right half-plane is equal to the number of sign changes in the first column of the Routh array.

Example 1

\[Q(s) = s^3 + s^2 + 2s + 8 = (s + 2)(s^2 - s + 4) \]

Routh array

\[\begin{array}{cccc}
 s^3 & s^2 & s^1 & s^0 \\
 1 & -6 & 8 & \\
 s^2 & k_1 & k_2 & \\
 s^1 & l_1 & & \\
 s^0 & m_1 & & \\
\end{array} \]

Two sign changes in the first column \(1 \rightarrow -6 \rightarrow 8\) \(\Rightarrow\) Two roots in RHP \(\frac{1}{2} \pm \frac{j\sqrt{15}}{2}\)

Example 2

\[Q(s) = s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10 \]

Routh array

\[\begin{array}{cccc}
 s^5 & s^4 & s^3 & s^2 \\
 1 & 2 & 2 & 4 \\
 s^4 & k_1 & k_2 & \\
 s^3 & l_1 & & \\
 s^2 & m_1 & & \\
\end{array} \]

Two sign changes in the first column \(\Rightarrow\) Two roots in RHP

Example 3

\[Q(s) = s^4 + s^3 + 3s^2 + 2s + 2 \]

Routh array

\[\begin{array}{cccc}
 s^4 & s^3 & s^2 & s^1 \\
 1 & 1 & 3 & 2 \\
 s^3 & & & \\
 s^2 & & & \\
 s^1 & & & \\
 s^0 & & & \\
\end{array} \]

If zero row appears in the Routh array, \(Q\) has roots either on the imaginary axis or in RHP.

Take derivative of an auxiliary polynomial \(s^2 + 2\) \(\Rightarrow\) But some roots are on imag. axis.
Example 4

\[Q(s) = s^3 + 3Ks^2 + (K + 2)s + 4 \]

Find the range of \(K \) s.t. \(Q(s) \) has all roots in the left half plane. (Here, \(K \) is a design parameter.)

Routh array

<table>
<thead>
<tr>
<th>(s^3)</th>
<th>(s^2)</th>
<th>(s^1)</th>
<th>(s^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3K > 0)</td>
<td>(3K(K + 2) - 4 > 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K > -1 + \frac{\sqrt{21}}{3})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simple & important criteria for stability

- **1st order polynomial** \(Q(s) = a_1s + a_0 \)

 All roots are in LHP \(\iff a_1 \) and \(a_0 \) have the same sign

- **2nd order polynomial** \(Q(s) = a_2s^2 + a_1s + a_0 \)

 All roots are in LHP \(\iff a_2, a_1 \) and \(a_0 \) have the same sign

- **Higher order polynomial** \(Q(s) = a_n s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0 \)

 All roots are in LHP \(\Rightarrow \) All \(a_k \) have the same sign

Examples

<table>
<thead>
<tr>
<th>(Q(s))</th>
<th>All roots in open LHP?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3s + 5)</td>
<td>Yes / No</td>
</tr>
<tr>
<td>(-2s^2 - 5s - 100)</td>
<td>Yes / No</td>
</tr>
<tr>
<td>(523s^2 - 57s + 189)</td>
<td>Yes / No</td>
</tr>
<tr>
<td>((s^2 + s - 1)(s^2 + s + 1))</td>
<td>Yes / No</td>
</tr>
<tr>
<td>(s^3 + 5s^2 + 10s - 3)</td>
<td>Yes / No</td>
</tr>
</tbody>
</table>

Summary and Exercises

- Routh-Hurwitz stability criterion
 - Routh array
 - Routh-Hurwitz criterion is applicable to only polynomials (so, it is not possible to deal with exponential, sin, cos etc.).

- Next,
 - Routh-Hurwitz criterion in control examples

- Exercises
 - Read Section 6.
 - Do Examples and Problems 6-2.