ME451: Control Systems

Lecture 9
Stability

Dr. Jongeun Choi
Department of Mechanical Engineering
Michigan State University

Course roadmap

Modeling
- Laplace transform
- Transfer function
- Models for systems
 - electrical
 - mechanical
 - electromechanical
- Block diagrams
- Linearization

Analysis
- Time response
 - Transient
 - Steady state
- Frequency response
 - Bode plot
- Stability
 - Routh-Hurwitz
 - (Nyquist)

Design
- Design specs
- Root locus
- Frequency domain
- PID & Lead-lag
- Design examples

(Matlab simulations & laboratories)
Simple mechanical examples

- We want mass to stay at $x=0$, but wind gave some initial speed ($F(t)=0$). What will happen?

![Diagrams showing mechanical systems with transfer functions $X(s)/F(s)$ for different configurations.]

- How to characterize different behaviors with TF?

Stability

- Utmost important specification in control design!
- Unstable systems have to be stabilized by feedback.
- Unstable closed-loop systems are useless.
 - What happens if a system is unstable?
 - may hit mechanical/electrical “stops” (saturation)
 - may break down or burn out
What happens if a system is unstable?

Tacoma Narrows Bridge (July 1-Nov.7, 1940)

Wind-induced vibration

Collapsed!

2008...

Mathematical definitions of stability

- **BIBO (Bounded-Input-Bounded-Output)** stability:
 Any bounded input generates a bounded output.

- **Asymptotic stability**:
 Any ICs generates $y(t)$ converging to zero.
Some terminologies

\[G(s) = \frac{n(s)}{d(s)} \]

Ex. \[G(s) = \frac{(s - 1)(s + 1)}{(s + 2)(s^2 + 1)} \]

- **Zero**: roots of \(n(s) \)
 (Zeros of \(G \)) = \pm 1

- **Pole**: roots of \(d(s) \)
 (Poles of \(G \)) = -2, \pm j

- **Characteristic polynomial**: \(d(s) \)

- **Characteristic equation**: \(d(s) = 0 \)

Stability condition in s-domain

(Proof omitted, and not required)

For a system represented by a transfer function \(G(s) \),

system is BIBO stable

All the poles of \(G(s) \) are in the open left half of the complex plane.

system is asymptotically stable
“Idea” of stability condition

Example \[y'(t) + \alpha y(t) = u(t), \quad y(0) = y_0 \]

\[sY(s) - y(0) + \alpha Y(s) = U(s) \]

\[Y(s) = \frac{1}{s + \alpha} (U(s) + y(0)) \]

Asym. Stability: \((U(s)=0)\)

\[y(t) = L^{-1}\{Y(s)\} = L^{-1}\left\{\frac{1}{s + \alpha}y(0)\right\} = e^{-\alpha t}y(0) \rightarrow 0 \Leftrightarrow Re(\alpha) > 0 \]

BIBO Stability: \((y(0)=0)\)

\[y(t) = L^{-1}\{Y(s)\} = L^{-1}\{G(s)U(s)\} = \int_0^t g(\tau)u(t-\tau)d\tau = \int_0^t e^{-\alpha \tau}u(t-\tau)d\tau \]

\[|y(t)| \leq \int_0^t |e^{-\alpha \tau}||u(t-\tau)||d\tau \leq \int_0^t |e^{-\alpha \tau}|d\tau \cdot u_{max} \quad \text{Bounded if } Re(\alpha)>0 \]

Remarks on stability

- For a general system (nonlinear etc.), BIBO stability condition and asymptotic stability condition are different.
- For linear time-invariant (LTI) systems (to which we can use Laplace transform and we can obtain a transfer function), the conditions happen to be the same.
- In this course, we are interested in only LTI systems, we use simply “stable” to mean both BIBO and asymptotic stability.
Remarks on stability (cont’d)

- **Marginally stable** if
 - \(G(s) \) has no pole in the open RHP (Right Half Plane), &
 - \(G(s) \) has at least one simple pole on \(j\omega \)-axis, &
 - \(G(s) \) has no multiple poles on \(j\omega \)-axis.

\[
G(s) = \frac{1}{s(s^2 + 4)(s + 1)} \quad \text{and} \quad G(s) = \frac{1}{s(s^2 + 4)^2(s + 1)}
\]

- **Unstable** if a system is neither stable nor marginally stable.

Examples

- **Repeated poles**

\[
\mathcal{L}^{-1}\left[\frac{2\omega}{(s^2 + \omega^2)^2}\right] = t \sin \omega t \quad \mathcal{L}^{-1}\left[\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}\right] = t \cos \omega t
\]

\[
\cdots = t^2 \sin \omega t \quad \cdots = t^2 \cos \omega t
\]

- **Does marginal stability imply BIBO stability?**

- **TF:**
 \[
 G(s) = \frac{2s}{(s^2 + 1)}
 \]

- **Pick**
 \[
 u(t) = \sin t \quad \mathcal{L}^{-1}(U(s)) = \frac{1}{(s^2 + 1)}
 \]

- **Output**

\[
\mathcal{L}^{-1}\left[Y(s) = G(s)U(s) = \frac{2s}{(s^2 + 1)^2}\right] = t \sin t
\]
Stability summary

Let \(s_i \) be poles of \(G \).
Then, \(G \) is …

- **(BIBO, asymptotically) stable** if \(\text{Re}(s_i) < 0 \) for all \(i \).
- **marginally stable** if
 - \(\text{Re}(s_i) \leq 0 \) for all \(i \), and
 - simple root for \(\text{Re}(s_i) = 0 \)
- **unstable** if
 it is neither stable nor marginally stable.

Mechanical examples: revisited

\[
\frac{X(s)}{F(s)} = \frac{1}{s^2}
\]

\[
\frac{X(s)}{F(s)} = \frac{1}{s^2 + B}
\]

\[
\frac{X(s)}{F(s)} = \frac{1}{s^2 + B + K}
\]
Examples

\[
G(s) \quad \text{Stable/marginally stable/unstable}
\]

\[
\begin{align*}
\frac{5(s + 2)}{(s + 1)(s^2 + s + 1)} & \quad ? \\
\frac{5(-s + 2)}{(s + 1)(s^2 + s + 1)} & \quad ? \\
\frac{5}{(s - 2)(s^2 + 3)} & \quad ? \\
\frac{s^2 + 3}{(s + 1)(s^2 - s + 1)} & \quad ? \\
\frac{1}{(s + 1)(s^2 + 1)^2} & \quad ? \\
\frac{1}{(s^2 - 1)(s + 1)} & \quad ???
\end{align*}
\]

Summary and Exercises

- Stability for LTI systems
 - (BIBO and asymptotically) stable, marginally stable, unstable
 - Stability for \(G(s)\) is determined by poles of \(G\).

- Next
 - Routh-Hurwitz stability criterion to determine stability without explicitly computing the poles of a system.

- Exercises
 - Read Sections 5-1, 5-2, 5-5.
 - Solve examples in the previous slide.