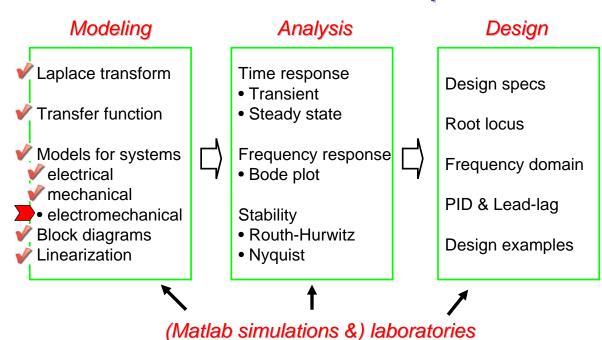
ME451: Control Systems

Lecture 8 Modeling of DC motors

Dr. Jongeun Choi
Department of Mechanical Engineering
University of British Columbia

2008 Fall

Course roadmap



What is DC motor?

An actuator, converting electrical energy into rotational mechanical energy

(You will see DC motor during Lab 1 and 4.)

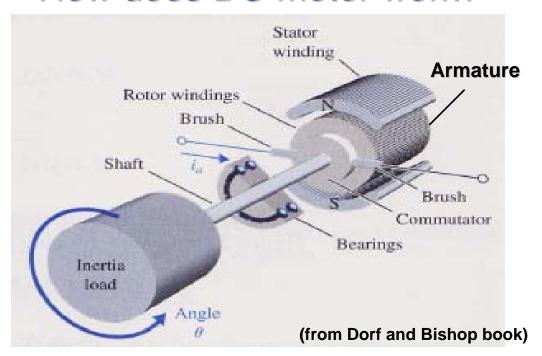
2008 Fall 3

Why DC motor?

- Advantages:
 - high torque
 - speed controllability
 - portability, etc.
- Widely used in control applications: robot, tape drives, printers, machine tool industries, radar tracking system, etc.
- Used for moving loads when
 - Rapid (microseconds) response is not required

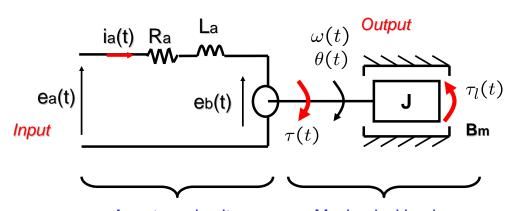
Relatively low power is required

How does DC motor work?



2008 Fall 5

Model of DC motor



Armature circuit

"a":armature

 e_a :applied voltage i_a :armature current

"b":back EMF

Mechanical load

mechanical

 θ :angular position ω :angular velocity J : rotor inertia B : viscous friction

Modeling of DC motor: time domain

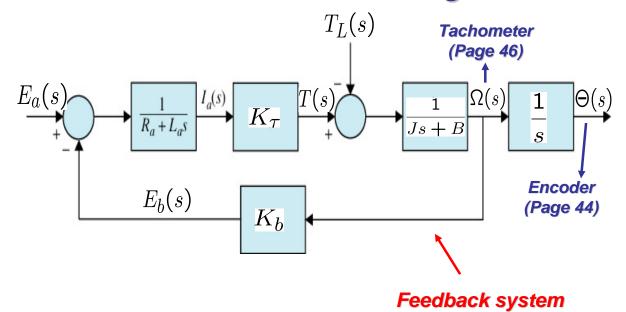
- Armature circuit $e_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + e_b(t)$
- Connection between mechanical/electrical parts
 - Motor torque $au(t) = K_{ au} i_a(t)$
 - Back EMF $e_b(t) = K_b\omega(t)$ Load torque
- Mechanical load $J\ddot{\theta}(t) = \tau(t) B\dot{\theta}(t) \tau_l(t)$
- Angular position $\omega(t) = \dot{\theta}(t)$

2008 Fall 7

Modeling of DC motor: s-domain

- Armature circuit $I_a(s) = \frac{1}{R_a + L_a s} (E_a(s) E_b(s))$
- Connection between mechanical/electrical parts
 - Motor torque $T(s) = K_{\tau}I_a(s)$
 - Back EMF $E_b(s) = K_b\Omega(s)$
- Mechanical load $\Omega(s) = \frac{1}{Js+B} (T(s) T_L(s))$
- Angular position $\Theta(s) = \frac{1}{s}\Omega(s)$

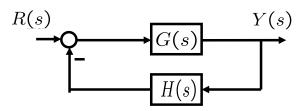
DC motor: Block diagram



2008 Fall 9

Useful formula for feedback

Negative feedback system



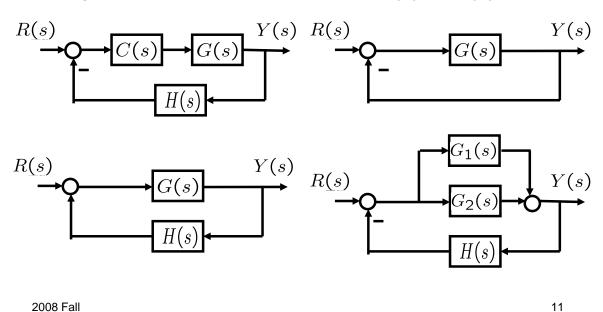
$$Y(s) = G(s)(R(s) - H(s)Y(s))$$
 \longrightarrow $(1 + G(s)H(s))Y(s) = G(s)R(s)$

$$\frac{Y(s)}{R(s)} = \frac{F_g}{1 - L_g} = \frac{G(s)}{1 + G(s)H(s)}$$

$$\frac{1}{Memorize this!} \begin{pmatrix} G(s) & \text{: forward gain } \\ G(s)H(s)(-1) & \text{: loop gain} \end{pmatrix}$$

Ex: Derivation of transfer functions

Compute transfer functions from R(s) to Y(s).



DC motor: Transfer functions (TF)

$$\frac{\Omega(s)}{E_a(s)} =$$

$$\frac{\Omega(s)}{T_L(s)} =$$

2nd order system

$$\Theta(s) = \frac{1}{s}\Omega(s) = \frac{1}{s}(G_1(s)E_a(s) + G_2(s)T_L(s))$$

DC motor: Transfer functions (cont'd)

Note: In many cases La<<Ra. Then, an approximated TF is obtained by setting La=0.

$$\frac{\Omega(s)}{E_a(s)} = \frac{K_{\tau}}{(L_a s + R_a)(J s + B) + K_b K_{\tau}} \approx \frac{K_{\tau}}{R_a (J s + B) + K_b K_{\tau}}$$

$$=: \frac{K}{T s + 1} \left(K := \frac{K_{\tau}}{R_a B + K_b K_{\tau}}, T = \frac{R_a J}{R_a B + K_b K_{\tau}}\right)$$
2nd order system

1st order system

$$\frac{\Theta(s)}{E_a(s)} = \frac{K}{s(Ts+1)}$$

2008 Fall 13

Summary and Exercises

- Modeling of DC motor
 - What is DC motor and how does it work?
 - Derivation of a transfer function
 - Block diagram with feedback
- Next
 - Stability of linear control systems, one of the most important topics in feedback control
- Exercises
 - Read Section 2.7, 2.8.
 - Go over the derivation for DC motor transfer functions by yourself. Obtain T(s)/E_a(s).

Main message until this point

Many systems can be represented as transfer functions!

Using the transfer functions, (to be continued)