Course roadmap

Modeling
- Laplace transform
- Transfer function
- Models for systems
 - electrical
 - mechanical
 - electromechanical
- Block diagrams
- Linearization

Analysis
- Time response
 - Transient
 - Steady state
- Frequency response
 - Bode plot
- Stability
 - Routh-Hurwitz
 - Nyquist

Design
- Design specs
- Root locus
- Frequency domain
- PID & Lead-lag
- Design examples

(Matlab simulations & laboratories)
Time-invariant & time-varying

- A system is called **time-invariant (time-varying)** if system parameters do not (do) change in time.
- Example: \(Mx''(t) = f(t) \) & \(M(t)x''(t) = f(t) \)
- For time-invariant systems:

 ![Time shift diagram]

 \[u(t) \quad \text{Time shift} \quad y(t) \]
 \[t_0 \quad t_0 + T \quad t_0 \quad t_0 + T \]

- This course deals with time-invariant systems.

Newton’s laws of motion

- 1\(^{\text{st}}\) law:
 - A particle remains at rest or continues to move in a straight line with a constant velocity if there is no unbalancing force acting on it.

- 2\(^{\text{nd}}\) law:
 - \(\sum F_i(t) = m \frac{d^2x}{dt^2} : \) translational
 - \(\sum \tau_i(t) = I \frac{d^2\theta}{dt^2} : \) rotational

- 3\(^{\text{rd}}\) law:
 - For every action has an equal and opposite reaction
Translational mechanical elements: (constitutive equations)

Mass

\[f(t) = M x''(t) \]
\[(x(0) = 0) \]

Spring

\[f(t) = K (x_1(t) - x_2(t)) \]
\[(x_1(0) = 0, x_2(0) = 0) \]

Damper

\[f(t) = B (x'_1(t) - x'_2(t)) \]

\[F(s) = M s^2 X(s) \]
\[F(s) = K (X_1(s) - X_2(s)) \]
\[F(s) = B s (X_1(s) - X_2(s)) \]

Mass-spring-damper system

\[M x''(t) + B x'(t) + K x(t) = f(t) \]
Free body diagram

\[f_k(t) \quad f_b(t) \]

Direction of actual force will be automatically determined by the relative values!

\[f_k(t) = K(x(t) - 0) \quad f_b(t) = B(x'(t) - 0) \]

- Newton’s law: \(F=ma \)

\[M x''(t) = f(t) - f_k(t) - f_b(t) = f(t) - Kx(t) - Bx'(t) \]

Mass-spring-damper system

- Equation of motion

\[M x''(t) + Bx'(t) + Kx(t) = f(t) \]

- By Laplace transform (with zero initial conditions),

\[X(s) = \frac{1}{Ms^2 + Bs + K} F(s) \]

(2nd order system)
Gravity?

At rest, \(\sum F_i = -k\delta + mg = 0 \)

- y coordinate: \(m\ddot{y} = mg - ky \)
- x coordinate: \(m\ddot{x} = mg - k(x + \delta) = -kx \)

Automobile suspension system

\[
\begin{align*}
M_1 x_1''(t) &= -B(x'_1(t) - x'_2(t)) - K_1(x_1(t) - x_2(t)) \\
M_2 x_2''(t) &= f(t) - B(x'_2(t) - x'_1(t)) - K_1(x_2(t) - x_1(t)) - K_2 x_2(t)
\end{align*}
\]
Automobile suspension system

\[
\begin{align*}
M_1 x''_1(t) &= -B(x'_1(t) - x'_2(t)) - K_1(x_1(t) - x_2(t)) \\
M_2 x''_2(t) &= f(t) - B(x'_2(t) - x'_1(t)) - K_1(x_2(t) - x_1(t)) - K_2 x_2(t)
\end{align*}
\]

Laplace transform with zero ICs

\[
\begin{align*}
M_1 s^2 X_1(s) &= -B(sX_1(s) - sX_2(s)) - K_1(X_1(s) - X_2(s)) \\
M_2 s^2 X_2(s) &= F(s) - B(sX_2(s) - sX_1(s)) - K_1(X_2(s) - X_1(s)) - K_2 X_2(s)
\end{align*}
\]

Block diagram

Rotational mechanical elements (constitutive equations)

- Moment of inertia: \(\tau(t) = J \theta''(t) \)
- Rotational spring: \(\tau(t) = K(\theta_1(t) - \theta_2(t)) \)
- Friction: \(\tau(t) = B(\theta'_1(t) - \theta'_2(t)) \)

\[
\begin{align*}
T(s) &= J s^2 \Theta(s) \\
T(s) &= K(\Theta_1(s) - \Theta_2(s)) \\
T(s) &= B s(\Theta_1(s) - \Theta_2(s))
\end{align*}
\]
Torsional pendulum system Ex.2.12

\[J\theta''(t) + B\theta'(t) + K\theta(t) = \tau(t) \]

- **Equation of Motion**

\[J\theta''(t) + B\theta'(t) + K\theta(t) = \tau(t) \]

- **By Laplace transform** (with zero ICs),

\[G(s) = \frac{\Theta(s)}{T(s)} = \frac{1}{Js^2 + Bs + K} \quad (2^{nd} \text{ order system}) \]
Example

- **FBD**

\[
\begin{align*}
\tau_b &= B_m(\dot{\theta}_m - 0) \\
\tau_k &= K(\theta_m - \theta_L)
\end{align*}
\]

- By **Newton’s law**

\[
\begin{align*}
J_m\theta_m''(t) &= \tau_m(t) - B_m\theta_m'(t) - K(\theta_m(t) - \theta_L(t)) \\
J_L\theta_L''(t) &= K(\theta_m(t) - \theta_L(t))
\end{align*}
\]

- By **Laplace transform** (with zero ICs),

\[
\begin{align*}
J_m s^2 \Theta_m(s) &= T_m(s) - B_m s \Theta_m(s) - K(\Theta_m(s) - \Theta_L(s)) \\
J_L s^2 \Theta_L(s) &= K(\Theta_m(s) - \Theta_L(s))
\end{align*}
\]

Fall 2008
Example (cont’d)

- From second equation:
 \[\Theta_L(s) = \frac{K}{J_L s^2 + K} \Theta_m(s) \]
 (2nd order system)

- From first equation:
 \[\Theta_m(s) = \frac{J_L s^2 + K}{s \left(J_m J_L s^2 + B_m J_L s^2 + K (J_m + J_L) s + B_m K \right) G_2(s)} T_m(s) \]
 (4th order system)

Block diagram

\[T_m(s) \xrightarrow{G_2} \Theta_m(s) \xrightarrow{G_1} \Theta_L(s) \]

Rigid satellite Ex. 2.13

- Broadcasting
- Weather forecast
- Communication
- GPS, etc.

\[\tau(t) = J \ddot{\theta}(t) \]

\[G(s) = \frac{\Theta(s)}{T(s)} = \frac{1}{Js^2} \]
Double integrator
Summary & Exercises

- Modeling of mechanical systems
 - Translational
 - Rotational
- Next, block diagrams.
- Exercises
 - Read Sections 2.5, 2.6.
 - Derive equations for the automobile suspension problem.

Exercises (Franklin et al.)

- *Quarter car model*: Obtain a transfer function from $R(s)$ to $Y(s)$.

\[
\frac{Y(s)}{R(s)} = \frac{k_{wb}}{m_1 m_2} \left(s + \frac{k_s}{b} \right) \frac{1}{s^4 + \left(\frac{b}{m_1} + \frac{b}{m_2} \right) s^3 + \left(\frac{k_s}{m_1} + \frac{k_s}{m_2} + \frac{k_{wb}}{m_1 m_2} \right) s^2 + \left(\frac{k_{wb} b}{m_1 m_2} \right) s + \frac{k_{ws}}{m_1 m_2}}
\]

Answer

- Road surface