Transfer Function

- Defined as the ratio of the Laplace transform of the output signal to that of the input signal (think of it as a gain factor!)
- Contains information about dynamics of a Linear Time Invariant system
- Time domain
 \[u(t) \rightarrow h(t) \rightarrow y(t) = h(t) \ast u(t) \]
- Frequency domain
 \[U(s) \rightarrow H(s) \rightarrow Y(s) = H(s)U(s) \]

Mass-Spring-Damper System

- ODE
 \[M\ddot{y}(t) + b\dot{y}(t) + ky(t) = u(t) \]
- Assume all initial conditions are zero. Then take Laplace transform,
 \[
 \begin{align*}
 Ms^2Y(s) + bsY(s) + kY(s) &= U(s) \\
 \frac{Y(s)}{U(s)} &= \frac{1}{Ms^2 + bs + k}
 \end{align*}
 \]
 Transfer function
Transfer Function

- Differential equation replaced by algebraic relation \(Y(s) = H(s)U(s) \)
- If \(U(s) = 1 \) then \(Y(s) = H(s) \) is the impulse response of the system
- If \(U(s) = 1/s \), the unit step input function, then \(Y(s) = H(s)/s \) is the step response
- The magnitude and phase shift of the response to a sinusoid at frequency \(\omega \) is given by the magnitude and phase of the complex number \(H(j\omega) \)

\[
\mathcal{L}[\delta(t)] = \int_{0}^{\infty} \delta(t)e^{-st}dt = 1
\]

\[
\mathcal{L}[1(t)] = \int_{0}^{\infty} e^{-st}dt = \frac{1}{s}
\]

Kirchhoff’s Voltage Law

- The algebraic sum of voltages around any closed loop in an electrical circuit is zero.

\[v_1 + v_2 + v_3 = 0 \]
Kirchhoff's Current Law

- The algebraic sum of currents into any junction in an electrical circuit is zero.

\[i_1 + i_2 + i_3 = 0 \]