Solar Energy
Focus or Concentrating Collectors
The heat transfer rate delivered to the focal point of a concentrating solar collector is given by
\[Q_H = h_{\text{conc}} A_{\text{col}} G_i \]
where
- \(h_{\text{conc}} \): focusing efficiency of the collector
- \(A_{\text{col}} \): area of the collector
- \(G_i \): solar radiation incident to the collector

Flat Plate Solar Collector
To determine the energy that can be delivered to a moving fluid that is in contact with our flat solar collector, we use the following equations
Conservation of energy for the Collector
\[\alpha_s G_i = h_{\text{fluid}} f_{\text{coll}} (T_{\text{coll}} - T_{\text{fluid,in}}) \exp\left\{ \frac{-h_{\text{fluid}} f_{\text{coll}} A_{\text{col}}}{m c_p} \right\} \]
\[+ \varepsilon_{\text{IR}} \sigma (T_{\text{coll}}^4 - T_{\text{surr}}^4) + \frac{(T_{\text{coll}} - T_{\text{air}})}{R_{\text{tot}}} \]
Energy Balance on Working Fluid
\[T_{\text{fluid,out}} = T_{\text{coll}} - (T_{\text{coll}} - T_{\text{fluid,in}}) \exp\left\{ \frac{-h_{\text{fluid}} f_{\text{coll}} A_{\text{col}}}{m c_p} \right\} \]
where
- \(\alpha_s \): solar absorptivity of the collector
- \(G_i \): incident solar radiation
- \(h_{\text{fluid}} \): convective heat transfer coefficient between the fluid and the collector
- \(f_{\text{coll}} \): fraction of collector in contact with water
- \(T_{\text{coll}} \): temperature of the collector
- \(T_{\text{fluid,in}} \): inlet temperature of the fluid
- \(T_{\text{fluid,out}} \): outlet temperature of the fluid
- \(c_p \): specific heat of fluid
- \(\dot{m} \): mass flow rate of fluid
- \(\varepsilon_{\text{IR}} \): infrared emissivity of the collector
- \(\sigma \): Stefan-Boltzman constant, \(5.67 \times 10^{-8} \, \text{W/m}^2\cdot\text{K}^4 \)
- \(T_{\text{surr}} \): radiation temperature of the surroundings

\[R_{\text{tot}} = \frac{1}{h_{\text{air}}} + N_{\text{AG}} \left[\frac{1}{h_{\text{AG}}} + \frac{\delta_{\text{glass}}}{k_{\text{glass}}} \right] \]
- \(h_{\text{air}} \): convective heat transfer between the air and the collector or top cover glass
Photovoltaic Collectors

For solar photovoltaic collector the electric power produced is given by,

\[W_{\text{elec}} = \eta_{\text{PV}} A_{\text{coll}} G_i \]

where

- \(\eta_{\text{PV}} \): conversion efficiency of the photovoltaic cell
- \(A_{\text{coll}} \): area of the collector
- \(G_i \): incident solar radiation

The efficiency of the solar cell is given by

\[\eta_{\text{PV}} = \eta_o [1 - \beta_{\text{PV}} |T_o - T_c|] \]

where

- \(\eta_o \): conversion efficiency of the photovoltaic cell at the reference temperature
- \(T_o \): reference temperature, 25°C
- \(\beta_{\text{PV}} \): temperature coefficient for the solar cell
- \(T_c \): average solar cell temperature

with

\[T_c = T_{\text{amb}} + C_f (218 + 823 K_i) \frac{\text{NOCT} - 20}{800} \]

where

- \(K_i \): monthly clearness index (comes from weather data)
- \(\text{NOCT} \): Nominal Operating Cell Temperature
- \(C_f \): tilt correction factor
- \(C_f = 1 - (1.17 \times 10^{-4}) (s_M - s)^2 \)

where \(s_M \) is the optimum tilt angle and \(s \) is the actual tilt angle, both expressed in degrees. The constants for the above equations are provided in the table below for several different types of solar cells.

<table>
<thead>
<tr>
<th>PV module type</th>
<th>(\eta_o) (%)</th>
<th>NOCT (°C)</th>
<th>(\beta_{\text{PV}}) (%/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono-Si</td>
<td>13.0</td>
<td>45</td>
<td>0.40</td>
</tr>
<tr>
<td>Poly-Si</td>
<td>11.0</td>
<td>45</td>
<td>0.40</td>
</tr>
<tr>
<td>a-Si</td>
<td>5.0</td>
<td>50</td>
<td>0.11</td>
</tr>
<tr>
<td>CdTe</td>
<td>7.0</td>
<td>46</td>
<td>0.24</td>
</tr>
<tr>
<td>CIS</td>
<td>7.5</td>
<td>47</td>
<td>0.46</td>
</tr>
</tbody>
</table>
Fuel Cells

Enthalpy and Entropy Evaluations

The enthalpy of a reactant or product is taken as

\[\bar{h}_i = \bar{h}_{f,i} + \Delta \bar{h}_i \]

where

- \(\bar{h}_{f,i} \): enthalpy of formation for the compound

- \(\Delta \bar{h}_i \): change in enthalpy for the compound as it goes from 298 K and 101 kPa to the fuel cell temperature and pressure

The entropy of a reactant or product for an ideal gas is taken as

\[s_i = s_i^0 - R_u \ln(y_i) \]

where

- \(s_i^0 \): temperature part of the entropy for the compound, read from the tables

- \(R_u \): universal gas constant. 8.314 kJ/(kmole·K)

- \(y_i \): mole fraction of the compound in the gas mixture

Electrical Calculations

Assuming an isothermal, reversible fuel cell:

Specific Electrical Work

\[
W_{\text{elec}} = \sum_{\text{reactants}} v_i \bar{h}_i - \sum_{\text{products}} v_j \bar{h}_j - T_{\text{FC}} \left\{ \sum_{\text{reactants}} v_i s_i - \sum_{\text{products}} v_j s_j \right\}
\]

where the \(v \)'s are the stoichiometric coefficients from the balanced chemical reaction equation.

Ideal Efficiency

\[
\eta_i = 1 - \frac{T_{\text{FC}} \left\{ \sum_{\text{reactants}} v_i s_i - \sum_{\text{products}} v_j s_j \right\}}{\sum_{\text{reactants}} v_i \bar{h}_i - \sum_{\text{products}} v_j \bar{h}_j}
\]

Ideal Voltage

\[
V_i = \frac{W_{\text{elec}}}{(96,487)N_e}
\]

Ideal Current

\[
I_i = \frac{W_{\text{elec}}}{V_i}
\]

Required Mass Flow Rate of Fuel

\[
m_{\text{fuel}} = \frac{MW_{\text{fuel}} \dot{W}_{\text{elec}}}{W_{\text{elec}}}
\]

Number of Fuel Cell Stacks Required

\[
\text{number of stacks} = \frac{V_{\text{required}}}{V_{\text{cell}}}
\]