1. Determine the entropy change for air as it goes from 285 K and 150 kPa to 1850 K and 1000 kPa.

Solution:
Our entropy change will be given by

\[s_2 - s_1 = \varphi_2 - \varphi_1 - R \ln\left(\frac{P_2}{P_1}\right) \]

so we go to the air table (A.3SI) and fill in our table below

<table>
<thead>
<tr>
<th>Substance Type: Ideal Gas (air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process: Unknown</td>
</tr>
<tr>
<td>State 1</td>
</tr>
<tr>
<td>T₁ = 285 K</td>
</tr>
<tr>
<td>P₁ = 150 kPa</td>
</tr>
<tr>
<td>(\varphi_1 = 6.66705 \text{ kJ/(kg·K)})</td>
</tr>
</tbody>
</table>

Italicized values read from air tables or calculated from ideal gas equation.

Now calculating

\[s_2 - s_1 = \varphi_2 - \varphi_1 - R \ln\left(\frac{P_2}{P_1}\right) = 8.7255 - 6.66705 - (0.287)\ln(1000/150) \]

\[= 1.5140 \text{ kJ/(kg·K)} \]

2. Determine the internal energy change for air as it undergoes an isometric process from 320 K and 72 kPa to 720 kPa.

Solution:
Our internal energy change will be given by, \(u_2 - u_1 \), where the \(u \)’s come form the tables

So we go to the air table (A.3SI) and fill in our table below

<table>
<thead>
<tr>
<th>Substance Type: Ideal Gas (air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process: Unknown</td>
</tr>
<tr>
<td>State 1</td>
</tr>
<tr>
<td>T₁ = 320 K</td>
</tr>
<tr>
<td>P₁ = 72 kPa</td>
</tr>
<tr>
<td>(u_1 = 15.902 \text{ kJ/kg})</td>
</tr>
</tbody>
</table>

Italicized values read from air tables.

Bold values are calculated.

We note that our second state is not fixed (we only know the pressure), but we know the process, so that

\[v_2 = v_1 \]

From our ideal gas law we have

\[v_1 = \frac{RT_1}{P_1} = \frac{(0.287)(320)}{72} = 1.2756 \text{ m}^3/\text{kg} \]

and

\[v_2 = 1.2756 \text{ m}^3/\text{kg} \]
We have now fixed our second state and can calculate the temperature using the ideal gas law

\[T_2 = \frac{P_2 v_2}{R} = \frac{(720)(1.2756)}{0.287} = 3211 \text{ K} \]

We can now go to the air table and use interpolation to find

\[u_2 = 2678.44 \text{ kJ/kg} \]

Then

\[\Delta u = 2678.44 - 15.90 = 2662.54 \text{ kJ/kg} \]

3. Determine the enthalpy change (in kJ/kg) for OH as it goes from 2400 K and 1300 kPa to 1600 K and 700 kPa.

Solution:

Our enthalpy change will be given by, \(h_2 - h_1 \). However, we find that we do not have ideal gas tables for OH. Hence, we will have to use the constant \(c_p \) approach, where the \(c_p,\text{avg} \) comes from the tables.

So we go to the Table A.2SI.

<p>| Substance Type: Ideal Gas (air) |</p>
<table>
<thead>
<tr>
<th>Process: Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
</tr>
<tr>
<td>(T_1 = 2400 \text{ K})</td>
</tr>
<tr>
<td>(P_1 = 1300 \text{ kPa})</td>
</tr>
</tbody>
</table>

Our average temperature is

\[T_{\text{avg}} = \frac{(T_1+T_2)}{2} = \frac{(2400+1600)}{2} = 2000 \text{ K} \]

which from our table gives

\(c_p,\text{avg} = 2.0354 \text{ kJ/(kg} \cdot \text{K}) \)

Then our change in enthalpy is

\[\Delta h = c_{p,\text{avg}}(T_2-T_1) = (2.0354)(1600-2400) = -1628.32 \text{ kJ/kg} \]

4. Determine the internal energy change (in kJ/kg) for OH as it undergoes an isentropic process from 3200 K and 7.2 MPa to 720 kPa.

Solution:

Our internal energy change will be given by, \(u_2 - u_1 \). Again we will use the constant specific heat approach where \(c_v,\text{avg} \) will come from Table A.2SI.

<p>| Substance Type: Ideal Gas (air) |</p>
<table>
<thead>
<tr>
<th>Process: Isentropic</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
</tr>
<tr>
<td>(T_1 = 3200 \text{ K})</td>
</tr>
<tr>
<td>(P_1 = 7200 \text{ kPa})</td>
</tr>
</tbody>
</table>

We note that our second state is not fixed (we only know the pressure), but we know the process, so that

\[s_2 - s_1 = c_{p,\text{avg}} \cdot \ln(T_2 / T_1) - R \ln(P_2 / P_1) = 0 \]

We know everything in this equation, except for \(T_2 \), which we can solve for

\[T_2 = T_1 \exp \left[\frac{R \ln(P_2 / P_1)}{c_{p,\text{avg}}} \right] \]

The problem here is that we do not know \(c_{p,\text{avg}} \), which requires \(T_2 \) to determine. This is a classic iteration problem. What we will do is guess a value for \(c_{p,\text{avg}} \) (normally at \(T_1 \)), then solve for \(T_2 \).
Use that T_2 to recalculate c_p, avg, recalculate T_2, and continue until T_2 becomes a constant. At 3200 K we have:

$$c_p = 2.1679 \text{ kJ/(kg-K)}$$

so that

$$T_2 = (3200) \exp\left\{ \frac{(8.314/17)n(720/7200)}{2.1679} \right\} = 2455 \text{ K}$$

Now calculating T_{avg}

$$T_{\text{avg}} = \frac{T_1 + T_2}{2} = \frac{3200 + 2455}{2} = 2877 \text{ K}$$

Reevaluating c_p

$$c_p = 2.1447 \text{ kJ/(kg-K)}$$

Recalculating T_2

$$T_2 = 2548 \text{ K}$$

which we will take as good enough. Then

$$T_{\text{avg}} = 2874 \text{ K}$$

with

$$c_{v,\text{avg}} = 1.6573 \text{ kJ/(kg-K)}$$

Then (finally)

$$\Delta u = c_{v,\text{avg}}(T_2 - T_1) = (1.6573)(2548 - 3400) = -1081.38 \text{ kJ/kg}$$