Motion Capture for Runners

Design Team 8 - Spring 2013

Members:
Blake Frantz, Zhichao Lu, Alex Mazzoni, Nori Wilkins, Chenli Yuan, Dan Zilinskas

Sponsor:
Air Force Research Laboratory
Dr. Eric T. Vinande

Facilitator:
Dr. Selin Aviyente
Outline

- Introduction
 - Objective and Benefits
- Proposed Solution
- Design Specification
 - Project Components
 - System Design
 - Components
- Testing
- Risk Analysis
- Project Roles
- Budget
- Schedule
Introduction

- The efficiency of a runner’s technique is directly proportional to the quality of their posture.

- Different running conditions significantly changes the form of the runner (running uphill, jogging, sprinting).

- Similar studies focused on measurement and analysis of running form using three dimensional acceleration and gyroscopic sensors.
Objectives

- Capture running motion by choosing proper sensors
- Develop recording system that receives data from sensors and sends data wirelessly to processor
 - body-worn controller
 - real-time processing on external PC
- Analyze motion data and provide real-time feedback to improve runner efficiency
- Analogous to understanding flexible structures on aircrafts and spacecrafts
System Benefits

- Direct benefit of maintaining proper running form
 - Improves overall performance, less chance of injury

- Real-time feedback with indicator for the runner
 - Allows for immediate changes of form

- Software to compare runner's form to an elite runner
 - Provides a baseline model

- This motion analysis and feedback is applicable to other systems
Proposed Solution

- **Body-worn Sensors**
 - Inertial Measurement Units (IMUs)
 - Accelerometer
 - Gyroscope
 - Sensors wired to the body-worn Controller
 - Sensors and controller sewn into bodysuit
 - Used for treadmill purposes

- **Body-worn Controller**
 - Preliminary data processing, time-stamping

- **Wireless Communication**
 - Communication between body worn controller and PC
 - Xbee, Wireless

- **Real-time Processing**
 - Process data on PC
 - Comparison software to compare with elite runner data

- **Real-time Feedback**
 - Body-worn indicator: LED indication of proper or improper form
Design Specifications

- **Battery**
 - Size
 - Life
- **Sensors**
 - Number of axes
 - Power consumption
 - Sampling Rate
 - Size
- **Wireless**
 - Bandwidth
 - Range
- **Cost**
Project Components

IMU (Inertial Measurement Unit)
- Device that measures velocity, orientation and gravity
- Consists of an accelerometer, gyroscope and a compass
- 9-axis measurements

Arduino Microcontroller
- Acquires data from the IMU sensors
- Synchronizes connected sensors
- Arduino UNO, and Arduino Due
Project Components

ZigBee (XBee) Communication
- Connects Arduino and PC wirelessly
- Connects the PC to body-worn feedback controller

Arduino Micro SD Shield
- Requires micro SD card
- Connects to Arduino microcontroller
- Provides additional memory for sensor data
Project Components

Arduino Software
- Requires setup of I2C bus
- Timestamps acquired data
- Transmits data through Xbee communication to PC

PC Software
- Acquires data from arduino
- Calculates position of sensors using algorithm
- Matlab, LabView, or Processing
System Design
Testing

- **Sensors**
 - Each sensor capturing data
 - Sending directly to the Arduino board
- **Arduino**
 - Time-stamping data properly
 - Consistent data acquisition
- **Communication**
 - Fast, noiseless wireless communication (Arduino to PC)
 - Wire communication between IMUs and Arduino
 - Easily understood and accurate feedback
- **Software Testing**
 - Arduino
 - PC acquisition data
 - Comparison software consistent
Risk Analysis

- **Sensors**
 - Power consumption
 - Sampling rate of sensors

- **Arduino**
 - Timestamping of acquired data

- **Communication**
 - Bandwidth of communication devices
 - Continuity of data acquisition (memory limitation)
 - Transmission of data
 - Synchronization
 - Range

- **Feedback**
 - Ease of interpreting form assessment
Project Roles

<table>
<thead>
<tr>
<th>Team Members</th>
<th>Non-Technical Roles</th>
<th>Technical Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blake Frantz</td>
<td>Presentation Prep</td>
<td>Suit Fabrication and Demonstration Expert</td>
</tr>
<tr>
<td>Zhichao Lu</td>
<td>Documentation Prep</td>
<td>Testing and Data Analysis</td>
</tr>
<tr>
<td>Alex Mazzoni</td>
<td>Webmaster</td>
<td>Comparison Software Developer</td>
</tr>
<tr>
<td>Nori Wilkins</td>
<td>Manager</td>
<td>Comparison Data Collection & Arduino Software</td>
</tr>
<tr>
<td>Chenli Yuan</td>
<td>Presentation Prep</td>
<td>Wireless Communication</td>
</tr>
<tr>
<td>Dan Zilinskas</td>
<td>Lab Coordinator</td>
<td>Interfacing Technician</td>
</tr>
</tbody>
</table>
Budget

<table>
<thead>
<tr>
<th>Item</th>
<th>Serial Number</th>
<th>Price</th>
<th>Amount</th>
<th>Totals</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductive Ribbon Connector</td>
<td>11681</td>
<td>$1.50</td>
<td>16</td>
<td>$24.00</td>
<td>Sparkfun</td>
</tr>
<tr>
<td>IMU MPU-9150</td>
<td>SDN-11486</td>
<td>$49.99</td>
<td>5</td>
<td>$249.95</td>
<td>Sparkfun</td>
</tr>
<tr>
<td>Arduino Due</td>
<td>ID: 1076</td>
<td>$49.95</td>
<td>1</td>
<td>$49.95</td>
<td>Adafruit</td>
</tr>
<tr>
<td>Arduino UNO R3 (ID: 50)</td>
<td>ID: 50 (Atmega328)</td>
<td>$29.95</td>
<td>1</td>
<td>$29.95</td>
<td>Adafruit</td>
</tr>
<tr>
<td>Arduino Headers R3</td>
<td>PRT-11417</td>
<td>$1.50</td>
<td>1</td>
<td>$1.50</td>
<td>Sparkfun</td>
</tr>
<tr>
<td>Arduino Headers</td>
<td>PRT-10007</td>
<td>$1.50</td>
<td>1</td>
<td>$1.50</td>
<td>Sparkfun</td>
</tr>
<tr>
<td>Arduino UNO USB A-B Connector</td>
<td>CAB-00512</td>
<td>$3.95</td>
<td>1</td>
<td>$3.95</td>
<td>Sparkfun</td>
</tr>
<tr>
<td>Arduino Due USBB Cable</td>
<td>RTL-10767</td>
<td>$5.95</td>
<td>1</td>
<td>$5.95</td>
<td>Sparkfun</td>
</tr>
<tr>
<td>Conductive Ribbon Wires (Price per yard)</td>
<td>11680</td>
<td>$5.25</td>
<td>8</td>
<td>$42.00</td>
<td>Sparkfun</td>
</tr>
<tr>
<td>Micro SD Shield (Only needed if wireless doesn't work)</td>
<td>DEV-09802</td>
<td>$14.95</td>
<td>1</td>
<td>$14.95</td>
<td>Sparkfun</td>
</tr>
<tr>
<td>Class 10 SD Card (8Gb max)</td>
<td>SDSDX-008G-AFFP</td>
<td>$13.00</td>
<td>2</td>
<td>$26.00</td>
<td>Amazon</td>
</tr>
<tr>
<td>Arduino Wireless Shield</td>
<td>MKSP18</td>
<td>$84.00</td>
<td>1</td>
<td>$84.00</td>
<td>Maker Shed</td>
</tr>
<tr>
<td>1 Xbee explorer dongle (Port Connection)</td>
<td>WRL-09819</td>
<td>$24.95</td>
<td>1</td>
<td>$24.95</td>
<td>Sparkfun</td>
</tr>
<tr>
<td>1 Xbee explorer USB (Cable Connection)</td>
<td>WRL-08687</td>
<td>$24.95</td>
<td>1</td>
<td>$24.95</td>
<td>Sparkfun</td>
</tr>
<tr>
<td>1 Xbee Shield for Arduino</td>
<td>WRL-10854</td>
<td>$24.95</td>
<td>1</td>
<td>$24.95</td>
<td>Sparkfun</td>
</tr>
<tr>
<td>4 Xbee Communication Devices (ZB Series 2)</td>
<td>XB24-Z7WIT-004</td>
<td>$22.95</td>
<td>4</td>
<td>$91.80</td>
<td>Adafruit</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td>$700.35</td>
<td></td>
</tr>
</tbody>
</table>
Schedule

<table>
<thead>
<tr>
<th>Product Development</th>
<th>0 edays 68 days</th>
<th>Tue 1/22/13</th>
<th>Thu 4/25/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test IMUs</td>
<td>0 edays 5 days</td>
<td>Mon 2/25/13</td>
<td>Fri 3/1/13</td>
</tr>
<tr>
<td>Test Processing Software</td>
<td>0 edays 4 days</td>
<td>Tue 2/26/13</td>
<td>Fri 3/1/13</td>
</tr>
<tr>
<td>Acquire Running Data</td>
<td>0 edays 1 day</td>
<td>Tue 3/5/13</td>
<td>Tue 3/5/13</td>
</tr>
<tr>
<td>Write Code for Runner Comparison</td>
<td>0 edays 15 days</td>
<td>Thu 3/7/13</td>
<td>Wed 3/7/13</td>
</tr>
<tr>
<td>Real Time User Indicator</td>
<td>0 edays 5 days</td>
<td>Thu 3/28/13</td>
<td>Wed 4/3/13</td>
</tr>
<tr>
<td>Interface Comparison Software</td>
<td>0 edays 7 days</td>
<td>Thu 4/4/13</td>
<td>Fri 4/12/13</td>
</tr>
<tr>
<td>Initial Test of design</td>
<td>0 edays 8 days</td>
<td>Mon 4/15/13</td>
<td>Wed 4/24/13</td>
</tr>
<tr>
<td>Final Testing</td>
<td>0 edays 1 day</td>
<td>Thu 4/25/13</td>
<td>Thu 4/25/13</td>
</tr>
</tbody>
</table>

Scheduling Breakdown
- Fabrication
- Software
- Interfacing
- Testing
Summary

- **Motion Capture**
 - IMUs placed on body detect motion
 - Arduino receives data and transmits to PC

- **Analysis**
 - PC has elite runner reference motion
 - Comparison Software

- **Feedback**
 - Immediate real-time feedback to the runner for improper or proper running form
Thank You and Questions