

0

Stepper Motor Control
With the DRV8824EVM, MSP430F1612 CC and

Stellaris LM3S9B96 CC

4/25/2011

Leslie Thomas
Patrick O’Hara
Thomas Volinski

Kole Reece

Facilitator: Dr. Bingsen Wang
Sponsor: Mr. Tim Adcock

1

Executive Summary

Texas Instruments has developed an evaluation module for their newest motor driver the

DRV8824. This evaluation module comes with a MSP430F1612 on board to control the motor

driver. The DRV8824 manages the pulse-width modulation (PWM) while allowing for the

MSP430 to control the DRV8824.

Texas Instruments has moved to a more modular design for their motor drivers. They are

providing the analog DRV models with sockets for their controlCARDs. These controlCARDs

contain their popular microcontrollers, and allow for motor control with interchangeable

microcontrollers.

To fit the DRV8824EVM into this modular design the board will be partitioned into two

parts, a motor driving board and a controlCARD. The motor driving board will have a DIMM

socket that will be able to accept multiple controlCARDs that can all have different

microcontrollers onboard. The controlCARD will contain the MSP430 microcontroller with a

matching pin out. The multiple microcontrollers on the controlCARDs will be able to be

programmed to control the DRV8824 motor driver, and provide a modular approach to motor

control.

2

Acknowledgments

Throughout the semester there are many people who have aided in the development of

our motor controlCARD and evaluation module. We would like to sincerely thank:

• Professor Michael Shanblatt: for covering our bill when we went way over budget.

• Professor Bingsen Wang: for giving our team the guidance needed and making it to every
Thursday meeting.

• Mrs. Roxanne Peacock: for assisting in purchasing our parts, and communicating
effectively with us throughout the semester.

• Mr. Brian Wright and Mr. Gregg Mulder: for helping us understand the necessary files
for PCB fabrication and for assembling our EVM for us.

• Mr. Greg Motter: for showing us how to complete a FAST diagram and construct a house
of quality.

• Mr. Jacob Scott: for assembling our most difficult PCB and replacing parts when they
burnt out.

• Mr. Tim Adcock: for giving our design team the opportunity to work with Texas
Instruments, providing us with all the hardware and software tools, and keeping in
constant contact throughout the semester.

3

Table of Contents
Executive Summary ... 1

Acknowledgements ... 2

Chapter 1 ... 5

Introduction .. 5

Background ... 8

Chapter 2 ... 13

FAST Diagram .. 13

Conceptual Design .. 14

Proposed Design Solution ... 15

Ranking of Conceptual Design .. 16

Risk Analysis ... 17

Proposed Budget ... 18

Proposed Schedule .. 18

Chapter 3 ... 20

Pinout of DRV8824 .. 20

PCB Design .. 23

Stellaris .. 26

DRV8824 Drivers ... 26

Windows GUI .. 29

Network GUI ... 32

Chapter 4 ... 37

Product Verification .. 37

Chapter 5 ... 40

Summary and Conclusion .. 40

Appendix I .. 43

Technical Roles and Responsibilities ... 43

Leslie Thomas ... 43

Thomas Volinski ... 45

Patrick O’Hara .. 47

Kole Reece .. 49

4

Appendix II ... 50

References .. 50

Appendix III .. 51

DRV8824EVM Schematic .. 51

DRV8824EVM Board Layout .. 54

DRV8824EVM Bill of Materials ... 55

MSP430F1612 contolCARD Schematic ... 56

MSP430F1612 contolCARD Board Layout ... 57

MSP430F1612 contolCARD Bill of Materials .. 58

MSP430F1612 contolCARD Pinout ... 59

Stellaris Control Card Schematic .. 60

C2000 F23432 Pinout ... 62

Molex DIMM 100 Footprint ... 63

DRV8824 Stellaris Driver .. 66

DRV8824.c .. 66

DRV8824.h .. 73

Windows GUI ... 75

DRV8824.c .. 75

GANTT .. 79

5

Chapter 1

Introduction

There are many motors on the market today such as the brushed DC, brushless DC, AC

induction, and stepper motors. They are each used for certain applications in many devices

today, including cars, air conditioners and microwaves. Before a motor can be implemented into

a project it is necessary to determine the speeds the motor will operate at and if the amount of

torque will be sufficient for the application. This is why it is a smart idea to build a test circuit or

purchase a developmental kit before implementing a motor in a project. Many motors require a

precise driving system for the control of a motor’s speed and direction. It also needs special

hardware and precisely timed signals to be sent to the circuit attached to the motor. The simplest

solution is to purchase a motor control integrated circuit (IC) and control that IC with a

microcontroller (MCU).

Design Team 6’s (DT6) project focuses specifically on the control of a stepper motor

with a DRV8824, which is a motor control IC created by Texas Instruments (TI). DT6 was given

this IC on an evaluation module called the DRV8824EVM, seen in Figure 1. This evaluation

module allows the customer to connect a two phase stepper motor to the board and test the motor

with all the controls the DRV8824 has to offer through a Windows General User Interface

(GUI). The evaluation module controls the DRV8824 with an MSP430F1612 MCU, this MCU is

the component that controls the DRV8824 and communicates with the Windows GUI.

6

 Figure 1. DRV8824EVM

Since not all customers want to use MSP430F1612 MCU in their projects TI faces a

problem with appealing to a large market. TI offers a large assortment of MCUs and 3 different

families; they are the MSP430, Stellaris, and C2000 families. TI often puts their most popular

MCUs on dual inline memory modules (DIMM) cards called controlCARDs. TI has many

developmental kits that have slots in them so these controlCARDs can be used. TI has designated

DT6 three tasks to make the DRV8824EVM more modular.

DT6 must replace the MCU on the evaluation module with a DIMM female connector,

this will allow for the customer to insert controlCARD into the DRV8824EVM with the MCU

that matches the customer’s needs. The second task is to create a MSP430F1612 controlCARD

that will work with the newly modified DRV8824EVM. The third task is to port the code from

7

the MSP430F1612 controlCARD to the Stellaris LM3S9B96 controlCARD and demonstrate its

working functions with the Windows GUI.

8

Background

 Stepper motors are a very unique type of motor; they are one of the only motors that need

no feedback to know what the motor will end up doing. One of the reasons for this is because

stepper motors are among the only motors to have axial flux. This means the length of the motor

is polarized instead of the face as seen in Figure 2.

The motor is moved by current excited through the stator at its phases. Figure 3 shows

how the stator would be configure for a 2-phase bi-polar motor. There is an A and B phase and

for each phase there is an opposite phase at a 90 degree rotation of the starting point. To turn a

motor, current would first be sent through Phase A this would attract the teeth of the rotor to the

teeth on the stator and they would align, while A’ would push the teeth away. Next phase B

would turn on and the teeth would move from aligning with A to aligning with B. Then A would

have current sent in the opposite direction turning A’ on which would move the teeth of the rotor

to align with A’ and so forth. This is how a full step would be implemented. Figure 4 further

illustrates the alignment of the teeth.

Rotor

Stator

Figure 2. Stepper Motor showing axial flux

9

This method of movement sets the stepper motor apart from other motors because the

stator and rotor never touch, this means great life span. Since the rotor and stator do not touch

there is no mechanical wear. The motor has over speed protection since if the switching speed

exceeds the motors capabilities it will simply stop moving and not damage the motor. Also since

this motor moves one step at a time it has excellent low speed control. There are some downfalls

Figure 4. Full Stepping Teeth Alignment

Figure 3. Stepper Motor Innards

10

though. With stator and rotor being separated, the motor requires large amounts of power to

move and it is also much larger than other types of motors with similar torque.

 The stepper motor is capable of moving in a higher resolution than just 1 full step. This

is useful because the larger amount of steps the more torque that can be produced. Figure 5

below shows on the left the method just described. Full stepping is created by moving from one

phase to another. This consumes less power but creates very little torque. To gain more torque

more than 1 phase must be turned on at a time. The graph to the far right shows how higher

resolution can be gained by switching between one and two phases. Even higher precision can be

gained by using pulse width modulation on the phases.

Figure 5. Stepping Characteristics

 DT6 is using the DRV8824 motor driver IC to generate the necessary PWM cycles to

phase A and B. This IC has a very straight forward interface and can power a 24V motor at

11

1.6As. The IC requires one supply voltage from this a 3.3V output is created, this is very nice

since this chip can power the MCU, a separate power supply is not needed. The DRV8824, as

seen in Figure 6, has 7 general port inputs:

 nEnable turns on/off the current going to the motor
 DIR tells the motor to rotate clockwise or counter-clockwise
 MODE0,1,2 1/2,1/4,1/8 stepping resolution and can be mixed together to make 1/32
 nSLEEP puts the motor in/out of sleep mode
 nRESET clears all the signals to the motor when input is low

There are two output status pins:

 nHOME is set high when 1 full step has been made, and low for all time else
 nFAULT is set high when IC has overheated or pulling too much current

There are three analog input pins:

 AVREF scales the current through Phase A based on the voltage at this pin
 BVREF scales the current through Phase B based on the voltage at this pin
 DECAY scales the decay of the PWM signal based of the voltage at this pin

There is one pin that takes a pulse:

 STEP every rising edge the motor moves 1 step

There are four outputs that connect directly to the motor:

 AOUT1 Phase A
 AOUT2 Phase A’
 BOUT1 Phase B
 BOUT2 Phase B’

ISENA and ISENB can be used to measure the current running through Phase A and B

respectfully. Having nHOME and nFAULT is a really great feature since they can be tied back to

the controlling MCU and handle the event of a fault and also determine if the motor is running at

the correct speed.

12

Figure 6. DRV8824

13

Chapter 2

Fast Diagram

 Before beginning the actual design work of the project, DT6 had to sit down and figure

out all of the components that were needed to complete the project. The first step in this process

was to create a FAST diagram which outlines every process that is needed to control the motor.

The diagram can be seen below in Figure 7.

As seen in Figure 7 the most important processes to control the motor are sending driving

signals, generating those driving signals, getting user input and programming the

microcontroller. These processes are the main parts of the design. To send the driving signals

DT6 will have to create a driver board with the DRV8824 IC. What will generate these signals

to drive the motor? This will be done by two microcontrollers, the MSP430F1612 and the

Stellaris LM3S9B96. They will need to connect to the DRV8824 board, so a DIMM slot will be

implemented on the board and the microcontrollers will each be placed on their own

Figure 7. Fast Diagram

14

controlCARD. After these steps are completed DT6 will have to program the microcontrollers to

accept user input from the windows application to control the motor.

Conceptual Design

DT6 now knows what parts are needed for the design. There are a total of five physical

components to the design. As shown in Figure 8, these components are: the PC, the

controlCARD with the MSP430, the controlCARD with the Stellaris, the EVM board which has

the DRV8824 and the stepper motor. The PC will communicate with the controlCARDs by a

USB connection. The PC will also be able to communicate with the Stellaris by Ethernet. It will

also use the USB connection to program the microcontrollers. The PC also has a GUI that will be

able to sends signals to the microcontrollers. Each controlCARD is connected to the DRV8824

through the DIMM100 slot that will be installed on the EVM board. The microcontrollers will

process the signals from the PC and then send the signals to the DRV8824 which will drive the

motor.

Figure 8. Completed System

15

Proposed Design

The proposed solution encompasses the hardware redesign of the DRV8824 evaluation

board, and the design of the MSP430F1612 DIMM controlCARD. In addition, software to

control the motor will need to be ported to the Stellaris M3 DIMM cards. The hardware redesign

consists of removing the digital section of the DRV8824EVM and replacing it with a DIMM

slot. To achieve this, the pin outs of the M3 Cortex card will be carefully studied in order to

design a functional MSP430F1612 controlCARD.

There are three major steps for accomplishing our project.

• Removal of the MSP430F1612 and definition of DIMM ports

The DRV8824EVM has a MSP430 microcontroller on board that will be

removed. There will then be input and output wires that need to be connected to

the DIMM slot. The DIMM ports will be ported based on the pins of the Stellaris

controlCARDs, so both can control the motor driver.

• Design of MSP430F1612 controlCARD

Once the definition of the DIMM ports is selected then the design of the

MSP430F1612 controlCARD can take place. The code will be the same that the

DRV8824EVM came stock with, but the controlCARD will be a removable

extension of the DRV8824EVM.

• Coding of the Stellaris controlCARD

Since the Stellaris has never been programmed to work with the DRV8824 motor

driver before, the code from the MSP430F1612 will be ported to the Stellaris

controlCARD. This will require much porting of 16-bit registers to 32-bit

registers. The reason this will work is because ARMs architecture allows for 32-

16

bit micro-controllers to still run 16-bit instructions.

Ranking of Conceptual Designs

The next part of the design was to figure out which components were most important to

the final design and which parts needed more time to be completed. This was accomplished by

creating a house of quality to determine the critical customer requirements (CCRs) of the project.

The house of quality can be seen below in Figure 9.

Figure 9. House of Quality to determine CCRs.

As shown in Figure 9, the components of the design and the design criterion were

compared. Each design criterion was given an importance value (1 being least important, 5

being most). Then each component is compared to each of the design criteria and assigned a

17

value of 9, 3, or 1. Then by multiplying the importance value with the correlation value and

adding up each column, the resulting numbers at the bottom of the table are calculated. The

values highlighted green are the most vital parts of the design. Whereas the values highlighted

red do not have much to do with the design portion of the project. DT6 concluded that the most

important part of the project was to finish the DRV8824 EVM. This was because without a

working EVM it would be impossible to have a running stepper motor by design day. The two

controlCARDs and programming of the cards were also very important to the design.

Risk Analysis

There are some major risks associated with our project. Figure 10 below lists these risks.

Each risk is given a rating of 1,3 or 6 for the impact of the risk and the likelihood it occurs. 1 is

for low risk and 6 is for high risk. These two categories are multiplied together for each risk to

get the final risk value. DT6 has concluded that an incorrect DRV8824 design would greatly

affect DT6’s ability to finish the project

Figure 10. Risk Analysis Chart

18

Proposed Schedule

Since the EVM was the most important part of the design, DT6 decided the first task that

needed to be completed was the DRV8824 board. This is also due to the amount of time it

would need to be fabricated. This board as well as the MSP430 controlCARD needed to be

completed early in case there was a mistake and needed to be re-fabricated. DT6’s goal was to

complete the design of these two boards by 3/1/11. The DRV8824 EVM was actually finished

3/3/11 and the controlCARD was finished 3/21/11. The EVM was finished roughly on time and

the controlCARD was a couple weeks late. This was not a huge problem because DT6 had

planned for delays in the design process in their GANTT chart. DT6 also planned to be done

with coding the Stellaris controlCARD by 4/20/11. This task was successfully completed on

time. DT6’s GANTT chart can be seen in its entirety in the appendix.

Proposed Solution Cost

Although DT6 spend over $1000 designing there DRV8824EVM and MSP430F1612

controlCARD this could be reduced by mass producing the product. The production of the two

boards can be broken down into several different items. Fabrication of the printed circuit board

for the DRV88xxEVM is estimated at $25 per board for large quantities. Parts for each board

would be estimated at $20 also when ordered in bulk. The final part of the production for the

hardware is the assembly which is estimated at about $25 per board. As with anything, the cost

associated with each board manufactured decreases as the number of boards increases.

After the EVM and the controlCARD are produced they are ready for distribution. Texas

Instruments has a vast website containing all of their solutions to motor control. These solutions

can be ordered off of the website or over the phone with a sales representative. The

19

DRV8824EVM would be priced comparably to the other evaluation modules at $100 per board.

TI also has multiple warehouses located in several locations which will allow for the product to

be produced in large quantities and stored until the customer places an order.

20

Chapter 3

MSP430 controlCARD Pin Layout

A major part of the MSP430 controlCARD design was to decide which MSP430 pins

would connect to the pins on the actual controlCARD. The first part of developing a design was

to figure out which pins on the microcontroller were vital to motor control. This was

accomplished by analyzing the DRV8824 EVM schematic and DRV8824 datasheet. The

schematic shows the entire DRV board wiring connections including which MSP430 pins send

signals directly to the DRV8824 and hints at what registers the MSP430 is using. From this

schematic there were a total of 20 pins that were directly related to controlling the stepper motor.

These pins were the following:

• P3.0 – SEL0 // P3.1 – SEL1
o Select signals used to determine which type of motor driver IC is connected to

the microcontroller.
• P4.1 – GDECAY

o Decay signal where a low value corresponds to a slow decay and a high value
corresponds to a fast decay.

• P4.2 – nEN
o Enable signal. Motor is enabled when this value is low.

• P4.3 – STP
o PWM signal. This is the signal that determines the speed of the motor. The

motor will step on each rising edge, so the higher the frequency the faster the
motor will run.

• P4.4 – DIR
o Signal that controls the direction that the motor spins.

• P4.5 – NC
o No connection pin. Even though this is a no connection pin, this NC pin on

the MSP430 is connected to the NC pin on the DRV8824 so the signal still
needs to be able to leave the controlCARD.

• P4.6 – nRESET
o When reset signal is low system is reset.

• P4.7 – nSLEEP
o When sleep signal is low system is put to sleep.

• P5.0 – MD2 // P5.1 – MD1 // P5.3 – MD0

21

o Mode 0-2 signals. These signals are set to a certain combination to cut the
speed of the motor by 1/2, 1/4, 1/8, 1/16, or 1/32 of full speed.

• P5.2 – nHM
o The home signal is set low when the stepper motor is at the home state.

• P6.6 – AGVREF // P6.7 – BGVREF
o These signals are analog reference voltages for bridge A and B.

The remaining 5 signals that need to come off of the controlCARD are the necessary

signals for JTAG. JTAG is mainly used for downloading and debugging integrated circuits.

These signals include TDI and TDO which are the input and output signals. There is also the

TCK and TRESTn signals which are the clock and reset signals for debugging. The final signal

is TMS, this signal is the test mode select signal. The DRV8824 EVM schematic can be seen in

its entirety in the appendix.

Now that the important signals are known, the next step in the pin layout process was to

figure out which controlCARD pins should be connected to the signals listed above. This was

done by comparing existing controlCARD pin outs to figure out some standards of controlCARD

design. The MSP430 controlCARD pin out was based on the layouts of two other

controlCARDs. These cards were the Stellaris LM3S9B95 and the C2000 F28335. By

analyzing these cards some similarities were noticed. First some background on the 100 pin

DIMM card. The 100 pin card has 50 pins on each side, and each side is broken into three

sections of pins. The first section has 6 pins, the seconds has 16 and the third has 28 pins. The

first section on both cards had 2 pins connected to an isolated 3.3V and included the TX and RX

pins. These pins are the receiving and transmitting pins used in the UART protocol. This

protocol is used for communicating with the microcontroller through Recommended Standard

(RS232). The second section is where all of the analog signals were placed and the third section

is where all of the GPIO/Special function signals were connected. Another similarity noticed

22

was that all of the ground and 5V pins were the exact same on both layouts. It was also noticed

that the last few GPIO pins is where they placed the JTAG signals on both cards.

With all this information gathered, it was time to actually pick the controlCARD pins for

the signals. For the MSP430 controlCARD, all of the ground and 5V pins were placed in the

same location as the Stellaris and C2000 cards. The two important analog signals, AGVREF and

BGVREF, were connected in the second section because that is where the Stellaris cards had the

analog signals. The JTAG signals were placed at the bottom of section three and all the other

important GPIO signals were placed at the beginning of the third section since this is where

PWM is located. After all of these pins were placed, the other signals were just connected to any

open controlCARD pins. The final MSP430 controlCARD pinout can be seen in the appendix as

well as the pin layouts for the Stellaris LM3S9B95 and the C2000 F28335.

23

PCB Design

 A large part of DT6’s project was to modify current hardware and create new hardware,

the new DRV8824EVM and the MSP430 conrolCard. For both of these items, the Altium

Designer software package was used to generate the design files. Altium is a professional grade

printed circuit board, PCB, CAD software package. While Altium has a relatively steep learning

curve, it is a very powerful tool capable of creating complex circuits on a large scale. Texas

Instruments is moving towards using this software for all their PCB designs, which is why DT6

chose to use the tool.

 The first circuit that DT6 created was the DRV8824EVM. This is an evaluation module,

EVM, for control of a stepper motor. The EVM previously contained the MSP430F1612

microcontroller on the circuit board. Texas Instruments required that the MSP430 and all

supporting circuitry be removed from the EVM and replaced with a DIMM socket. The design

files for the original EVM were provided for modification. The EVM is four layer printed circuit

board. There are two main routing layers, top and bottom layers, one ground plane layer, and a

third routing layer used strictly for test pins on the EVM. The use of a ground plane is very

useful as it removes the need to route ground to every component on the circuit that is connected

to ground. Alternatively, all that is required is to create a via down to the ground plane near the

component connected to ground.

 While modifying the original EVM design files, there was one problem that proved to be

the most challenging. The footprint for the DIMM sockets proved to be difficult to find. The

required libraries were not included with Altium. Altium hosts several libraries containing many

different manufacturers’ parts on their website. Once the required library was located all that was

left was routing the signals to their appropriate place. As mentioned earlier, and located in the

appendix, the appropriate pin connections were already determined.

24

 The second PCB design that was required was the design of the MSP430 controlCARD.

The controlCARD is a 100-pin dual inline memory module containing the MSP430

microcontroller and supporting circuitry previously on the EVM. The controlCARD is also a

four layer board containing the same top and bottom layers, ground plane, and a third routing

layer. The controlCARD however has several other aspects that are different from the EVM.

Because the controlCARD needs to fit into a defined socket it has specific dimensions, defined in

the appendex.

 These dimensions proved to be one of the more challenging aspects related to the

controlCARD. As there was no template containing the appropriate dimensions for the

controlCARD, the card was created from scratch. AutoCAD was used to create a drawing

containing the correct dimensions. This drawing was imported into Altium to create the basic

board layout. Once the board dimensions were set in Altium design could continue.

 The controlCARD proved to be more challenging because it requires custom

specifications. These specifications refer to the contact points on the edge of the card. These

contacts are called “gold fingers” and required a specific layout to be correct. This layout was

not documented very well. Contact was made with several Altium representatives to determine

the correct layout. The card edges require the solder mask to cover all of the pins, however the

paste for the pins must have a negative overlap with the top and bottom layer pads.

 Overall both PCB designs were successful. Both are fully functional and operate as

expected to control the motor. A few minor changes to the controlCARD are recommended if a

second iteration were to occur. The first modification is to add vdd and ground vias to allow the

controlCARD to be powered externally aside from USB. Pins 1 and 51 would also be changed to

25

3.3V Isolated. DT6 would also change the 3.3V signal on the EVM to be supplied from the

output of the DRV8824 instead of being supplied from the DIMM.

26

DRV8824 C++ Driver

 This project included porting code from the MSP430F1612 to the Stellaris LM3S9B96.

To accomplish this, research of datasheets and TI forums was necessary. The end goal was to

create a header file that would contain all the information to control a DRV8824 with a Stellaris

MCU. The resulting code looks much different than the MSP430 code because the Stellaris

differs from the MSP430 in many ways; including processing speed, number of pins, number of

special functions each pin has, and way code is written.

 The MSP430F1612 is a 8MHz MCU which contains 64 pins, 48 of which can be used as

General Port Input Output (GPIO). The Stellaris LM3S9B96 is a 80MHz MCU which contains

100 pins. MSP430s pins have generally only 2 functions, 1 being GPIO which means it only

outputs or inputs a high/low signal, and 1 special function such as communication, pulse width

modulation (PWM), or analog to digital converter (ADC). The Stellaris’ have GPIO on all pins

and many special functions. This is because the Stellaris architecture has muxing inside the chip

that allow for the switching of functions between pins.

 To being porting the code DT6 first had to learn how the MSP430 handled the control of

the DRV8824. The general programing method for the MSP430’s are there is a list of variables,

these variables can represent control registers and bits in the control registers. For example the

code below P1DIR is saying that the direction register of port 1 is going to be set to what is on

the right hand side of the equal sign, since BIT0 is on the right hand side then P1.0 is now an

output, and the next like P1OUT sets the port 1 registers output, and since BIT0 is there again

now the pin at P1.0 will have a 3.3V output.

P1DIR = BIT0; // turn LEDS off
 P1OUT |= BIT0; // make LEDS outputs

27

Now for the Stellaris on the other hand uses variables to represent registers and control bits but it

sets them with functions. The code below is how the Stellaris sets port A0 to 3.3V.

SysCtlPeripheralEnable() function is used to set ports to GPIO or their specific special function.

GPIOPinTypeGPIOOutput() function takes the base port (A-H) and the pin (0-7) and sets the

direction register to an output at that pin. GPIOPinWrite() function set the pin to an high or low

output.

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, GPIO_PIN_0);
GPIOPinWrite(GPIO_PORTA_BASE, GPIO_PIN_0, GPIO_PIN_0);

This may look like more work but setting up function like this is makes it very simple to

implement the special features in the code.

 DT6 has created a header file that drives the DRV8824, it includes the functions to

accelerate and decelerate the motor. There is also function that set the GPIO pins on the

DRV8824 and the frequency of the pulses. Below is a list of the function that controls the non

GPIO features. DRV8824_init() is a function that initializes all the ports to the DRV8824 and

sets the PWM to a 50% duty cycle. Frequency takes a number in hertz then sends that frequency

to the PWM. ACCEL and DECEL, accelerate and decelerate the motor starting at the current

frequency at time of call to a desired frequency at a certain acceleration rate and acceleration

time base. The STEP_ON() function is used to move the motor a certain amount of steps.

STEP_HL() inverts the PWM signal.

extern void DRV8824_init();
extern void Frequency(ulFreq);
extern void ACCEL(pastFreq, newFreq, AccelRate, AccelTimeBase);
extern void DECEL(pastFreq, newFreq, AccelRate, AccelTimeBase);
extern void STEP_ON(cnt, Freq);
extern void STEP_HL(output);

28

Every GPIO pin on the DRV8824 has a corresponding function to set it that pin to a high

or low signal and the function is in the format of PinName(High/Low). All of the actual pins are

defined in the header so there is no need to call the pin name directly this makes it very easy to

switch to other Stellaris MCUs. The code below shows an example of how to change the

Direction pin on the DRV8824, since DT6 has placed defines at the top of the DRV8824 header

now simply replace GPIO_PORTA_BASE and GPIO_PIN_5 with the correct pin on the

controlCARD the customer is using and the code will be executable.

#define DIR_BASE GPIO_PORTA_BASE
#define DIR_PIN GPIO_PIN_5

DT6 overcame many problems when creating this header file. When running a stepper

motor even when it is running at full speed with microstepping on it is still under 100KHz, and

since the Stellaris runs at 80MHz it was causing issues with accurate PWM signals at low

frequency. This was eventually overcome by dividing the clock by 4 and then another 16, this

reduced the frequency of the PWM cycle to a max of 1.25MHz, this eventually allowed for the

bandwidth of speed for the stepper motor to be better than the MSP430. Another issue DT6 had

to overcome was to implement the ability to count the number of pulse that had gone by. Since

the Stellaris uses function that implement interrupt and there was no function that counted PWM

cycles DT6 had to come up with a solution. This problem was eventually solved by creating an

interrupt that could count each time a pulse went from low to high.

29

Windows GUI

One of DT6’s major task was to implement the Stellaris motor driving code with the

Windows GUI, this involved learning how the Windows GUI communicated with the MSP430

and how to take these inputs and create a desired output on the motor through the Stellaris MCU.

Almost all of TIs solutions offer a USB to COM options, this means that when a USB is plugged

into the computer it is recognized as COM port (Serial Port), this is one of the simplest

communication protocols to implement because it can communicate with as low as 2 wires.

Below is the code to initialize UART which I the serial communication protocol.

 //
 // Initialize the UART.
 //
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 UARTStdioInit(0);

Next the Windows GUI communicates at 9600 bauds, no parity bit, data bits 8, 1 stop bit, and no

flow control. So to implement this in the Stellaris code the line that contains communication

parameters in UARTStdioInit() need to be changed to the code below.

MAP_UARTConfigSetExpClk(g_ulBase, MAP_SysCtlClockGet(), 9600,
 (UART_CONFIG_PAR_NONE | UART_CONFIG_STOP_ONE |
 UART_CONFIG_WLEN_8));

The Windows GUI sends the MCU 5 bytes of information, the first byte contains the operation

code, and this is either the GPIO, DAC, Step, or Pulse setting. The remaining 4 bytes contain

information for each of the parameters and change depending on what is being typed into the

GUI. The MCU only sends 3 bytes back containing its firmware revision code. There are 9

operation codes that are used for the stepper motor and they are listed below.

Write GPIO Data
[OPCODE = 3][GPIO DATA][Not Used][Not Used][Not Used]

Disable PWM
[OPCODE = 0x0C][Timer #][Not Used][Not Used][Not Used]

Set Timer Output

30

[OPCODE = 0x0E][Timer #][Not Used][Not Used][Not Used]

Pulse Timer Output
[OPCODE = 0x0F][Timer Used][Pulse Length Hi][Pulse Length Lo][Not Used]

Write GPIO Data on SPI Port
[OPCODE = 0x16][GPIO DATA][Not Used][Not Used][Not Used]

START STEPPER
[OPCODE = 0x17][Frequency Hi][Frequency Lo][Accel Rate][Accel Time Base]

STOP STEPPER
[OPCODE = 0x18][Frequency Hi][Frequency Lo][Not Used][Not Used]

STEPPER_SPEED
[OPCODE = 0x19][Frequency Hi][Frequency Lo][Accel Rate][Accel Time Base]

MOVE_STEPS
[OPCODE = 0x1A][Frequency Hi][Frequency Lo][STEPS Hi][STEPS Lo]

The best way to implement this communication protocol is to store the 5 bytes that are received

from the Windows GUI into a buffer and then use case and if statements to determine the

operation that needs to be performed. Below is the base case statement for the operation code,

this is the same as the MSP430 code, but entering the code for each case statement things now

have to be changed.

// Switch statement for Operation Code
 switch(SerialBuffer[0])
 {
 case (0x03): // Write GPIO
 case (0x0C): // nEnable & Step (Low)
 case (0x0E): // nEnable & Step (High)
 case (0x0F): // Pulse 1 Step
 case (0x16): // Modes
 case (0x17): // Start Stepper
 case (0x18): // Stop stepper
 case (0x19): // Update stepper
 case (0x1A): // Move Steps
 }

Sense the MSP430 calculates frequency based of number of counts in the timer and the Stellaris

uses a function that take a frequency in hertz the Stellaris has to convert timer counts to a usable

frequency. Below is how the start stepper case is handled, the first byte contains 17 which

activates the start stepper case statement, now the next two bytes are used to get the 16 bit timer

31

count that is used for frequency. This is why SerialBuffer[1] is multiplied by 256 then added to

SerialBuffer[2], so this give a number that does not represent a frequency, but since the MSP430

is running at 4MHz the frequency can be calculated by dividing 4MHz by the timer count.

SerialBuffer[3] is the acceleration rate and SerialBuffer[4] is the acceleration time base, this is

all the parameters needed for the ACCEL() function. ACCEL() is going to now accelerate the

motor from 0 Hz to (ulFreq) Hz at a rate of (AccelRate) Hz per (AccelTimeBase) milliseconds.

 case (0x17): //Start Stepper
 DesiredStepperSpeed = (SerialBuffer[1] * 256)

+ SerialBuffer[2];
 ulFreq = (4000000/ DesiredStepperSpeed);
 AccelRate = SerialBuffer[3];
 AccelTimeBase = SerialBuffer[4];
 ACCEL(0, ulFreq, AccelRate, AccelTimeBase);
 pastFreq = ulFreq;
 break;

DT6 was faced with some problems when connecting the Stellaris to the Windows GUI since the

GUI was not optimized for the Stellaris but the MSP430. The Windows GUI was created to send

information to go directly to a register on an MSP430 meaning that SerialBuffer would be the

only variable on the right hand side of an equal sign. This meant that the Stellaris code in certain

portions had to do conversions before having useful data to generate an output. DT6 also

discovered inaccurate commenting in the original MSP430 code provided by TI, this added

confusion to the project when bytes from the Windows GUI were not cooperating with the

Stellaris code when following the guidelines of the commented code. There was one problem

that could not be avoid and that was the implementation of the DAC, this was not able to work

with the Stellaris because the MCU provided does not have a DAC on the chip.

32

Ethernet Motor Control

 The Stellaris LM3S9B96 has an Ethernet port attached to it, so DT6 decided it would be

useful to be able to control the motor through this port. The Stellaris family of microcontrollers

is used for graphical LCD screens and networking. DT6 added the goal of creating a webpage

that would have the same capabilities as the Windows GUI to control the motor.

 The first step was to figure out how to program the Stellaris controlCARD. DT6 found

some samples of code online that would be a good starting point for this portion of the project.

The program that was used as a starting point for this GUI was a program that demonstrated

controlling the Stellaris card through the Ethernet port by pressing a button on the webpage that

would turn the user led on and off.

 The next step was to create a webpage that looked very similar to the Windows GUI and

had the same functionality as that application. Figure 11 shown below is a snapshot of what the

webpage looks like.

Figure 11. Motor Control Webpage

33

All of this code was written in HTML with embedded JavaScript. The way the code

works is once a button or check box is clicked a function in the JavaScript will be called. This

function will then create a string and place this string in a buffer that gets sent to another

program. Each button and checkbox has its own function associated with it. For example when

the button “start steps” is pressed the values in the “pulses per second”, “accel rate” and “time

base” boxes are read in the JavaScript function. From there a string with all of the above

information is created and sent to another file where all the calculations will be done. The code

for the above webpage can be found online at

http://www.egr.msu.edu/classes/ece480/capstone/spring11/group06/index.html.

 Now that the information from the webpage has been received the actual calculations can

be done. IAR Embedded Workbench was the debugging program used to write the code and

program the microcontroller. There are 3 main files that DT6 wrote for relaying the information

from the webpage to motor. The first file is just used to look at the string sent from the

JavaScript and call the appropriate functions. These function calls could be in either of the other

two files. One of the files, the DRV8824 driver file, is also shared by the Windows application

program. It includes functions to initialize ports, turn certain signals on an off and PWM signal

creation. This is where all the actual work is done. The other file is only used by the Ethernet

motor control program. This file will parse the string to extract values such as PPS and convert

them into decimal form. It also handles any functions that are not common to both the webpage

and the windows application.

 The process of how the information from the webpage gets to the motor will now be

shown. The function code for starting the motor will be used as the example.

http://www.egr.msu.edu/classes/ece480/capstone/spring11/group06/index.html�

34

The above line of HTML code calls the function startSteps() when the “start steps”

buttons is pressed.

The above JavaScript function first grabs the values of pulses per second, acceleration

rate and time base from the webpage form. It then sends an http request to communicate with

the program loaded on the microcontroller. If that request is successful it sends a string denoting

that start steps has been pressed and it also includes the values of the three values obtained

earlier.

35

The above if statement looks for the startSteps string. If it finds it, it will call the function

io_set_stepper_speed and send the piece of the string that contains the three values to that

function.

The above function first parses the three values form the string and converts them into

decimals. Then it checks to see if the values are legal inputs. Then the values get sent off to the

ACCEL function where the actual signals will be set.

36

The ACCEL and Frequency functions are shown above. The ACCEL function keeps

stepping the frequency up based on the time base and acceleration rate. Every time it does this it

calls the frequency function which is where the new PWM step signal with the new frequency is

created. So the PWM keeps stepping up its frequency until it reaches the desired frequency.

This is basically how the controlling the stepper motor through a webpage works. All of the

above code with all of the functions can be found in its entirety online at

http://www.egr.msu.edu/classes/ece480/capstone/spring11/group06/index.html.

http://www.egr.msu.edu/classes/ece480/capstone/spring11/group06/index.html�

37

Chapter 4

Product Verification

 The two PCBs fabricated by DT6 can be seen in Figure 12 below. To see full

demonstration video of the DRV8824EVM and MSP430F1612 CC working, please visit DT6 at

http://www.egr.msu.edu/classes/ece480/capstone/spring11/group06/media.html. This

demonstration will show that the hardware is correct and demonstrates the functionality of the

Windows and Ethernet GUI.

Figure 11. MSP430F1612 CC and DRV8824EVM

http://www.egr.msu.edu/classes/ece480/capstone/spring11/group06/media.html�

38

 In order to prove some of the functionality of the DRV8824EVM in this paper let’s look

at some waveforms produced from running the motor. The first waveform (Figure 13) shows the

input of the STEP pin that is generated by the Stellaris. This is the pulse 1 function of the

DRV8824 Driver.

Figure 12. Pulse 1 Step

 The next waveform (Figure 14) shows the STEP_ON() function being implemented with

an input of 5 steps and a frequency of 1KHz. This waveform shows exactly that there is 5 pulses

Figure 13. Pulse 5 Steps

39

in succession and the frequency markers state it is 999.997Hz which is 1KHz.

This last waveform (Figure 15) shows the output slowing down from 1KHz at an

acceleration rate of 100Hz per 40ms using the STOP() function. The waveform shows a 200Hz

and 100Hz pulse next to each other which is the expected output.

Figure 14. Stop Function

In conclusion, DT6 code for the Stellaris is fully function and works better than the

MSP430 that was provided by TI. DT6 coded Stellaris works better because the faster speeds of

the Stellaris allow the PWM to generate faster frequencies then the MSP430. Both fabricated

boards work and have been tested extensively, every pin on the MSP430F1612 and Stellaris

LM3S9B95 has been turned high and low through code and checked at the output on the

DRV8824EVM to ensure the hardware is correct. The MSP430 controlCARD was loaded with

the code provided by TI and tested against the original DRV8824EVM to ensure they compared.

Code was developed for the Stellaris and tested with an oscilloscope as seen above till DT6 was

confident the code was fully functional.

40

Chapter 5

Summary and Conclusions

 Texas Instruments has been working on making their evaluation modules more modular.

They have many customers and most customers prefer different microcontrollers. Customers

want their boards to be able to accept any type of TI microcontroller to control the driver IC that

is that board, but TI does not want to design a new board for every customer. They want to be

able to design one board to sell to all customers, and have the customer buy a controlCARD with

the microcontroller of their liking. This will save Texas Instruments and their customers a lot of

money, along with allowing Texas Instruments to produce a larger inventory because only one

type of evaluation module will need to be produced. TI has tasked DT6 with creating one of

these EVMs from a non-modular EVM and a controlCARD to fit the new EVM, while

programming another controlCARD to be compatible with the new EVM. DT6 had the

following three main tasks to accomplish.

• Design a new DRV8824 board with a controlCARD slot.
• Design a MSP430 controlCARD that was compatible with this new board.
• Program a Stellaris controlCARD to control the DRV8824.

Task 1 was designing a new DRV8824 board with a controlCARD slot. The board was

designed and sent out to the fabrication house roughly on time according to the schedule.

Testing of this board was a success, although there was a minor setback. A power supply was

hooked up in reverse and as a result the DRV8824 was burned out. Luckily, there were extra

chips and DT6 found a person who had the expertise to solder the new chip onto the board.

After this setback there were no other problems with the board.

Task 2 was designing a MSP430 controlCARD that was compatible with the new board.

This board was designed and sent to a fabrication house a little later than expected because of

41

complications with designing gold finger on a DIMM. The board ended up being shipped out

three week later than hoped, but this setback was a not an issue because DT6 left enough time at

the end to allocate for a fabrication delay. When the board returned it was programmed and

connected to the DRV board, the two boards worked together seamlessly to control the stepper

motor.

Task 3 was programming the Stellaris controlCARD to control the stepper motor. This

task was a success. DT6 was able to get all aspects of the Windows application to work with the

Stellaris controlCARD, with the exception of the DAC control since the Stellaris does not have a

DAC on chip. DT 6 even went above and beyond by also getting the Stellaris to control the

stepper motor with a webpage through the Ethernet port.

The budget for this project was $500. DT6 went over budget because of the fabrication

requirements. This was due to the ECE shop only being able to produce 2 layered boards, while

DT6 needed 4 layer boards. A breakdown of DT6 budget can be seen in Figure 16 below. The

parts for this project were relatively cheap, since the whole board is basically surface mount each

resistor and capacitor is around 7 cents. The price for parts was reduced by about $30 by

receiving three TI parts as samples. The fabrication to get the DRV fabricatred was $573.44, this

Figure 16. Budget

42

was reduced after request for discounts to the price listed above. The controlCARD was

$1010.45 this was the intial qoute DT6 received, it took much negoiation to reduce the price to

what is seen in the table.

There are many future projects that could expand on what DT6 has done. A team could

use the DRV board that DT6 created to design and program a controlCARD with a C2000

microcontroller. They could also do roughly the same project DT6 did, but with a different type

of motor driver IC or a different type of motor while still using the Stellaris contorlCard. They

could use and brushed or brushless DC motor for example. Combining some of these tasks

together would create a good design project for a future group.

Overall the project came together more smoothly than anyone could have expect

considering no members of DT6 had PCB design skills prior to this project. There were some

minor setbacks, but DT6 accomplished all the tasks that were given to them and even went the

extra mile working on controlling the stepper motor through the Ethernet port. DT6 considers

this project a complete success, and was honored to work with Texas Instruments this semester.

43

Appendix 1

Leslie Thomas (LT)

LT completed many tasks this semester along with his main tasks he assigned himself

this semester, which were creating the pinout for the DRV8824 and MSP430 DIMM along with

create the Stellaris header file for the DRV8824. He started the semester off by understanding

how the DRV8824EVM works, which pins were necessary to be PWM and GPIO. He then

proceed understand how the LM3S9B96 controlCARD was wired up and which pins were could

be shared between the new MSP430 controlCARD. He then compiled information with TJs

research and together designed the pinout for the DRV8824EVM and MSP430 controlCARD

that Pat used to make a PCB. LT provided support for Pat with researching footprints and

checking all the connections he made before fabrication. LT found the fabricator to use,

compiled the Gerber files, created the bill of materials, and then placed all the orders for the parts

in the project.

For the software end, LT was the lead programmer behind creating the header files to be

used with Windows GUI along with Pat and TJs Ethernet solutions, with contributions from

there code added by TJ. LT created an interrupt for the Stellaris controlCARD that can count the

number of pulses of a PWM signal. He also created the functions to move the motor a certain

amount of steps, accelerate and decelerate the motor, invert the PWM signal, and also turn the

GPIO high or low based off a boolean input. LT studied the MSP430 code and used this

44

information to read the RS232 signal with the Stellaris controlCARD. He achieved a fully

working solution for the Windows GUI with no changing of the initial GUI provided by TI and

compiled this solution with the DRV8824 header file. LT overcame all the bugs in his code and

has not been able to force the code to crash since his last revision.

45

Thomas Volinski (TJ)

TJ had two main tasks that needed to complete for our project to be successful. One was

hardware based and one was software based.

For the hardware, he looked up everything he could on the MSP430F1612. He figured

out which pins were necessary for controlling the motor. He figured out which pins needed to

come off of the controlCARD and connect to the DRV8824. TJ analyzed a Stellaris and a C2000

controlCARD to determine where to place the ground and 5V pins on the controlCARD as well

as where which GPIO signals should be connected to which controlCARD pins. LT and TJ

designed the final pin layout based on TJs research.

A smaller task TJ accomplished was going through all of the MSP430 code Design Team

6 had to determine how they set up their code and to figure out what all of the important registers

do. From there he looked into all documentation he could find about the Stellaris LM3S9B96 to

find the registers that were equivalent to the MSP430 registers so that when Design Team 6

began coding the conversion of code would be much simpler.

TJ’s main software task, was working with Pat on being able to control the Stellaris

controlCARD through its Ethernet port. Pat and TJ created a webpage that has the same

functionality as the windows application. TJ and Pat programmed the entire process of taking

information from the webpage, sending it to the program on the microcontroller, and creating the

46

required PWM signal as well as turning other signals on or off. Pat and TJ were successfully

able to turn all of the control signals on and off. They also were able to start, stop and update the

motors speed. TJ and Pat were able to make the motor pulse one step or any given number of

steps. Finally, they were able to compute the RPMs of the motor. TJ also worked on the

aesthetics of the webpage.

47

Patrick O’Hara

Through the entire project, Patrick worked on several aspects. The two main parts of the

project that Patrick worked on was the DRV8824EVM and the MSP430 controlCARD. Patrick

modified the supplied design files for the EVM to remove the MSP430 microcontroller from the

board. After the MSP430 microcontroller was removed, a 100-pin DIMM socket was added and

the pin out created by TJ and LT was used to make the appropriate connected on the EVM. After

completion of the EVM printed circuit board, Patrick started work on the DIMM. A template to

create the controlCARD was not supplied, so the design started from an AutoCAD drawing.

Patrick created the AutoCAD drawing using references to the standard dimensions for 100-pin

DIMM cards. He was then able to import this drawing into Altium Designer to create the board

cutout. He worked in accord with LT to place the appropriate parts on the board. After the parts

were placed, Patrick routed the circuit. Research was done by LT, TJ, and Patrick to determine

the correctness for the “gold fingers” and the dimensions on the ControlCARD.

 When both of the PCB designs were completed, Patrick started to work with TJ to

programming the Stellaris microcontroller. Patrick worked with TJ to create the web interface to

the microcontroller. The HTML interface sends commands from the web to the microcontroller

to control the motor. The interface was modeled from the original Windows application provided

by Texas Instruments. Patrick and TJ worked together to complete the web page, along with

coding the protocol for communication between the web page and the microcontroller. They also

48

worked together to code the appropriate response of the microcontroller. While working on all

parts of the PCB design and the software, Patrick provided appropriate work to both TJ and LT

to check his work. If either teammate noticed an error, the error was eradicated.

49

Kole Reece

Technical tasks included the design of DIMM control card and research on MSP430 code

for porting to Stellaris platform. The design started with going over the controlCARD provided

by the previous semesters design team and looking for templates to design the controlCARD. No

DIMM standards or templates were found. A controlCARD template was created with

AutoCAD and the controlCARD design was undertaken by other team members. The MSP430

communicates with the Windows GUI using universal asynchronous receiver/ transmitter

(UART). In order to port the MSP430 code over to the selection on the GUI interface, it signals

to the MSP430 to complete some operation. Work on porting the code involved identifying the

operation code looking at the values that were sent to the MSP430, identifying the registers that

were updated and the values that were sent. A simple example of this would be to configure the

digital to analog converter. The expected OPCODE would be 5 DAC12_0CTL. Digital to analog

converter would be configured based on serial buffer inputs 1 and 2 from the computer and the

output voltage would be set using the DAC12_0DAT. All the registers that pertained to the

application were “mapped out “using the above method.

50

Appendix II

References:

“MSP430F1612 Datasheet.” Texas Instruments.
http://focus.ti.com/lit/ds/symlink/msp430f1612.pdf

“DRV8824 Datasheet.” Texas Instruments.
http://focus.ti.com/lit/ds/symlink/msp430f2013.pdf

 “DRV88xx Schematic” Texas Instruments.
CC – LM3S9B95 Schematic Rev. 0. Texas Instruments. PDF.

“Getting Started with PCB Design”, Altium.
http://www.altium.com/files/Altiumdesigner6/LearningGuides/TU0117%20Getting%20S
tarted%20with%20PCB%20Design.PDF

http://focus.ti.com/lit/ds/symlink/msp430f1612.pdf�
http://focus.ti.com/lit/ds/symlink/msp430f2013.pdf�
http://www.altium.com/files/Altiumdesigner6/LearningGuides/TU0117%20Getting%20S�
http://www.altium.com/files/Altiumdesigner6/LearningGuides/TU0117%20Getting%20S�

51

52

53

54

55

Pin Port

Port Pin

56

57

VDD 3.3V 1 51 3.3V

PWR

32 RX 2 52 TX

GND

spare 3 53 spare

MSP430 to

spare 4 54 spare

 GND 6 56 GND

 59 P6.0/A0 7 57 P6.1/A1 60
 GND 8 58 GND
 61 P6.2/A2 9 59 P6.3/A3 2
 GND 10 60 GND
 3 P6.4/A4 11 61 spare

 GND 12 62 GND
 5 P6.6/A6 13 63 P6.7/A7 6
 GND 14 64 GND

 15 65

spare 16 66 spare

 17 67

spare 18 68 spare

 19 69

spare 20 70 spare

 21 71

spare 22 72 spare

 47 P5.3/UCLK1 23 73 P4.7/TBCLK 43
 46 P5.2/SOMI1 24 74 P4.6/TB6 42
 45 P5.1/SIMO1 25 75 P4.5/TB5 41
 44 P5.0/STE1 26 76 P4.4/TB4 40
 GND 27 77 5V

 39 P4.3/TB3 28 78 P4.2/TB2 38
 48 P5.4/MCLK 29 79 P4.1/TB1 37
 34 P3.6/UTXD1 30 80 P4.0/TB0 36

spare 31 81 P3.7/URXD1 35

spare 32 82 5V
 12 P1.0 33 83 P2.2 22

 13 P1.1 34 84 P2.3 23
 14 P1.2 35 85 P2.4 24
 15 P1.3 36 86 P2.5 25
 GND 37 87 5V

 16 P1.4 38 88 P2.6 26
 17 P1.5 39 89 P2.7 27
 18 P1.6 40 90 P3.0/SEL0 28
 19 P1.7 41 91 P3.1/SEL1 29

spare 42 92 5V

 20 P2.0 43 93 P3.2 30
 21 P2.1 44 94 P3.3 31

spare 45 95 spare

spare 46 96 5V
 GND 47 97 TDI 55

 57 TCK 48 98 TDO 54
 56 TMS 49 99 TRESTn 58
 spare 50 100 spare

MSP430F1612 controlCARD Pinout

58

59

60

61

62

63

64

//***
//
// DRV8824.c - Prototypes for Stellaris Motor Control.
// Author: Leslie Thomas (LT)
// co-authors: TJ Volinski & Pat O'Hara
//
// Copyright (c) 2011
//
//
// THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// LMI SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
//
//***

#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_pwm.h"
#include "inc/hw_sysctl.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/interrupt.h"
#include "driverlib/pwm.h"
#include "driverlib/gpio.h"
#include "driverlib/rom.h"
#include "driverlib/sysctl.h"
#include "driverlib/DRV8824.h"

//***
//
// Initalize GPIO and PWM port/s
//
//***
unsigned int uiCount;
unsigned int uiStepCount;
unsigned long ulScale;

void PWM2Int(void)
{
 PWMGenIntClear(STEP_PWM, STEP_GEN, PWM_INT_CNT_ZERO);

 uiCount++;

 if(uiCount >= uiStepCount)
 {
 PWMOutputState(STEP_PWM, STEP_BIT , false);
 PWMIntDisable(STEP_PWM,STEP_INT);
 PWMGenIntTrigDisable(STEP_PWM, STEP_GEN, PWM_INT_CNT_ZERO);
 uiCount = 0;
 PWMGenConfigure(STEP_PWM, STEP_GEN,
 PWM_GEN_MODE_UP_DOWN | PWM_GEN_MODE_NO_SYNC);

65

 Frequency(0);
 }
}

void DRV8824_init(void)
{
 //
 // Enable the peripherals used by this example.
 //

 // PWM Enabled for STEP
 SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM);
 SysCtlPWMClockSet(SYSCTL_PWMDIV_16);

 // GPIO for everything else
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOH);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 // Step
 GPIOPinConfigure(GPIO_PE0_PWM4);
 GPIOPinTypePWM(STEP_BASE, STEP_PIN);

 // Direction
 GPIOPinTypeGPIOOutput(DIR_BASE, DIR_PIN);
 GPIOPinWrite(DIR_BASE, DIR_PIN, 0);

 // nSLEEP
 GPIOPinTypeGPIOOutput(SLEEP_BASE, SLEEP_PIN);
 GPIOPinWrite(SLEEP_BASE, SLEEP_PIN, 0);

 // RESET
 GPIOPinTypeGPIOOutput(RESET_BASE, RESET_PIN);
 GPIOPinWrite(RESET_BASE, RESET_PIN, 0);

 // nENABLE
 GPIOPinTypeGPIOOutput(ENABLE_BASE, ENABLE_PIN);
 GPIOPinWrite(ENABLE_BASE, ENABLE_PIN, 0);

 // Mode0
 GPIOPinTypeGPIOOutput(MODE_0_BASE, MODE_0_PIN);
 GPIOPinWrite(MODE_0_BASE, MODE_0_PIN, 0);

 // Mode1
 GPIOPinTypeGPIOOutput(MODE_1_BASE, MODE_1_PIN);
 GPIOPinWrite(MODE_1_BASE, MODE_1_PIN, 0);

 // Mode2
 GPIOPinTypeGPIOOutput(MODE_2_BASE, MODE_2_PIN);
 GPIOPinWrite(MODE_2_BASE, MODE_2_PIN, 0);

 // NC
 GPIOPinTypeGPIOOutput(NC_BASE, NC_PIN);
 GPIOPinWrite(NC_BASE, NC_PIN, 0);

 // Decay

66

 GPIOPinTypeGPIOOutput(DECAY_BASE, DECAY_PIN);
 GPIOPinWrite(DECAY_BASE, DECAY_PIN, 0);

 //
 // Configure PWM
 //

 PWMGenConfigure(STEP_PWM, STEP_GEN,
 PWM_GEN_MODE_UP_DOWN | PWM_GEN_MODE_NO_SYNC);

 //
 // Enable the PWM generator.
 //
 PWMGenEnable(STEP_PWM, STEP_GEN);
}

//***
//
// This function sets the PWM frequency given to ulFreq at a 50% duty cycle
// This function changes the PWM clock divide to gain better resolution at
// higher speeds
//***

void Frequency(signed int ulFreq)
{
 if(ulFreq>40000)
 {
 SysCtlPWMClockSet(SYSCTL_PWMDIV_2);
 ulScale = 2;
 }
 else if(ulFreq>20000)
 {
 SysCtlPWMClockSet(SYSCTL_PWMDIV_4);
 ulScale = 4;
 }
 else if(ulFreq > 10000)
 {
 SysCtlPWMClockSet(SYSCTL_PWMDIV_8);
 ulScale = 8;
 }
 else
 {
 SysCtlPWMClockSet(SYSCTL_PWMDIV_16);
 ulScale = 16;
 }

 unsigned long ulPeriod = SysCtlClockGet() / (ulFreq * ulScale) ;
 PWMGenPeriodSet(STEP_PWM, STEP_GEN, ulPeriod);
 PWMPulseWidthSet(STEP_PWM, STEP_OUT, ulPeriod / 2);

}

//***
//

67

// Accelarate the motor to new frequency starting at the past frequency
// With the Acceleration Rate and Acceleration Time Base provided
//
//***

void ACCEL(signed long pastFreq, signed long newFreq, unsigned long AccelRate,
unsigned long AccelTimeBase)
{
 PWMOutputState(PWM_BASE, PWM_OUT_4_BIT , true);

 while(newFreq > pastFreq)
 {
 SysCtlDelay(((SysCtlClockGet()/3) / (1000/AccelTimeBase)));
 pastFreq = pastFreq + AccelRate;
 Frequency(pastFreq);
 }
 Frequency(newFreq);
}

//***
//
// Decelarate the motor to new frequency starting at the past frequency
// With the Acceleration Rate and Acceleration Time Base provided
//
//***

void DECEL(signed long pastFreq, signed long newFreq, unsigned long AccelRate,
unsigned long AccelTimeBase)
{

 while(newFreq < pastFreq)
 {

 SysCtlDelay(((SysCtlClockGet()/3) / (1000/AccelTimeBase)));
 pastFreq = pastFreq - AccelRate ;
 Frequency(pastFreq);

 }
 if(newFreq < 62)
 {
 PWMOutputState(STEP_PWM, STEP_BIT , false);
 Frequency(0);
 }
 else
 {
 Frequency(newFreq);
 }

}

//***
//
// Initiates number of steps and sets the frequency
// Deadband of 10ns is used to allow the interrupt to see the first pulse
//

68

//
//***

void STEP_ON(unsigned int cnt,signed int Freq)
{
 uiStepCount = cnt;
 PWMGenConfigure(STEP_PWM, STEP_GEN,
 PWM_GEN_MODE_DOWN | PWM_GEN_MODE_DB_NO_SYNC);
 PWMDeadBandEnable(STEP_PWM, STEP_GEN,10,0);
 PWMGenIntClear(STEP_PWM, STEP_GEN, PWM_INT_CNT_ZERO);
 PWMGenIntTrigEnable(STEP_PWM, STEP_GEN, PWM_INT_CNT_ZERO);
 Frequency(Freq);
 IntEnable(INT_PWM2);
 PWMIntEnable(STEP_PWM,STEP_INT);
 PWMOutputState(STEP_PWM, STEP_BIT , true);
 PWMGenEnable(STEP_PWM, STEP_GEN);

}

//***
//
// Inverts the STEP signal
//
//***

void STEP_HL(tBoolean output)
{
 PWMOutputInvert(STEP_PWM, STEP_BIT , output);
}

//***
//
// GPIO outputs
//
//***

void Direction(tBoolean output)
{
 GPIOPinWrite(DIR_BASE, DIR_PIN, output ? DIR_PIN : 0);
}

void nSleep(tBoolean output)
{
 GPIOPinWrite(SLEEP_BASE, SLEEP_PIN, output ? SLEEP_PIN : 0);
}

void nReset(tBoolean output)
{
 GPIOPinWrite(RESET_BASE, RESET_PIN, output ? RESET_PIN : 0);
}

void nEnable(tBoolean output)
{

69

 GPIOPinWrite(ENABLE_BASE, ENABLE_PIN, output ? ENABLE_PIN : 0);
}

void nDecay(tBoolean output)
{
 GPIOPinWrite(DECAY_BASE, DECAY_PIN, output ? DECAY_PIN : 0);
}

void Mode_0(tBoolean output)
{
 GPIOPinWrite(MODE_0_BASE, MODE_0_PIN, output ? MODE_0_PIN : 0);
}

void Mode_1(tBoolean output)
{
 GPIOPinWrite(MODE_1_BASE, MODE_1_PIN, output ? MODE_1_PIN : 0);
}

void Mode_2(tBoolean output)
{
 GPIOPinWrite(MODE_2_BASE, MODE_2_PIN, output ? MODE_2_PIN : 0);
}

void NC(tBoolean output)
{
 GPIOPinWrite(NC_BASE, NC_PIN, output ? NC_PIN : 0);
}

//***
//
// Checks if GPIO input is on
//
//***

tBoolean is_Direction_on(void)
{
 return(GPIOPinRead(DIR_BASE, DIR_PIN));
}

tBoolean is_nEnable_on(void)
{
 return(GPIOPinRead(ENABLE_BASE, ENABLE_PIN));
}

tBoolean is_nSleep_on(void)
{
 return(GPIOPinRead(SLEEP_BASE, SLEEP_PIN));
}

tBoolean is_nReset_on(void)
{
 return(GPIOPinRead(RESET_BASE, RESET_PIN));
}

tBoolean is_Mode_0_on(void)
{

70

 return(GPIOPinRead(MODE_0_BASE, MODE_0_PIN));
}

tBoolean is_Mode_1_on(void)
{
 return(GPIOPinRead(MODE_1_BASE, MODE_1_PIN));
}

tBoolean is_Mode_2_on(void)
{
 return(GPIOPinRead(MODE_2_BASE, MODE_2_PIN));
}

tBoolean is_nDecay_on(void)
{
 return(GPIOPinRead(DECAY_BASE, DECAY_PIN));
}

tBoolean is_STEP_HL_on(void)
{
 return(GPIOPinRead(STEP_BASE, STEP_PIN));
}

71

//***
//
// DRV8824.h - Prototypes for Stellaris Motor Control.
// Author: Leslie Thomas (LT)
// co-authors: TJ Volinski & Pat O'Hara
//
// Copyright (c) 2011
//
//
// THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// LMI SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
//
//***

#ifdef __cplusplus
extern "C"
{
#endif

//***
//
// Define Ports
//
//***

#define STEP_BASE GPIO_PORTE_BASE // PE0 on LM3S9B95 CC
#define STEP_PIN GPIO_PIN_0
#define STEP_PWM PWM_BASE
#define STEP_GEN PWM_GEN_2
#define STEP_OUT PWM_OUT_4
#define STEP_BIT PWM_OUT_4_BIT
#define STEP_INT PWM_INT_GEN_2 // Interrupt for Step

#define DIR_BASE GPIO_PORTA_BASE
#define DIR_PIN GPIO_PIN_5

#define SLEEP_BASE GPIO_PORTA_BASE
#define SLEEP_PIN GPIO_PIN_3

#define RESET_BASE GPIO_PORTH_BASE
#define RESET_PIN GPIO_PIN_1

#define ENABLE_BASE GPIO_PORTE_BASE
#define ENABLE_PIN GPIO_PIN_1

#define DECAY_BASE GPIO_PORTH_BASE
#define DECAY_PIN GPIO_PIN_6

#define MODE_0_BASE GPIO_PORTH_BASE
#define MODE_0_PIN GPIO_PIN_0

72

#define MODE_1_BASE GPIO_PORTF_BASE
#define MODE_1_PIN GPIO_PIN_0

#define MODE_2_BASE GPIO_PORTA_BASE
#define MODE_2_PIN GPIO_PIN_4

#define NC_BASE GPIO_PORTF_BASE
#define NC_PIN GPIO_PIN_1

//***
//
// Functions
//
//***

extern void DRV8824_init(void);
extern void Frequency(signed int ulFreq);
extern void ACCEL(signed long pastFreq, signed long newFreq, unsigned long
AccelRate, unsigned long AccelTimeBase);
extern void DECEL(signed long pastFreq, signed long newFreq, unsigned long
AccelRate, unsigned long AccelTimeBase);
extern void STEP_ON(unsigned int cnt, signed int Freq);
extern void STEP_HL(tBoolean output);

extern void Direction(tBoolean output);
extern void nSleep(tBoolean output);
extern void nReset(tBoolean output);
extern void nEnable(tBoolean output);
extern void nDecay(tBoolean output);
extern void Mode_0(tBoolean output);
extern void Mode_1(tBoolean output);
extern void Mode_2(tBoolean output);
extern void NC(tBoolean output);

tBoolean is_Direction_on(void);
tBoolean is_nEnable_on(void);
tBoolean is_nSleep_on(void);
tBoolean is_nReset_on(void);
tBoolean is_Mode_0_on(void);
tBoolean is_Mode_1_on(void);
tBoolean is_Mode_2_on(void);
tBoolean is_nDecay_on(void);
tBoolean is_STEP_HL_on(void);

//***
//
// Mark the end of the C bindings section for C++ compilers.
//
//***
#ifdef __cplusplus
}
#endif

73

//***
**
//
// main.c - Windows DRV8824 GUI protocol
// Author: LT Thomas
// Copyright (c) 2011
//
// THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS,
IMPLIED
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS
SOFTWARE.
// LMI SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
// This is part of revision 4652 of the EK-LM3S9B92 Firmware Package.
//
//***
**
#include "inc/hw_ints.h"

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/pwm.h"
#include "driverlib/rom.h"
#include "driverlib/sysctl.h"
#include "driverlib/DRV8824.h"
#include "driverlib/interrupt.h"
#include "utils/uartstdio.h"

unsigned long AccelRate;
unsigned long AccelTimeBase;
signed long ulPeriod;
signed long ulFreq;
signed long pastFreq;

unsigned int cnt;
unsigned int stpCount;

//***
**
//
// The error routine that is called if the driver library encounters an
error.
//
//***
**
#ifdef DEBUG
void
__error__(char *pcFilename, unsigned long ulLine)
{
}
#endif

//code

74

//***
**
//
// This example connects the CC-LM3S9B95
//
//***
**

int
main(void)
{
 cnt = 0;

 // unsigned long ulPeriod;
 char SerialBuffer[5];

 //
 // Set the clocking to run directly from the crystal.
 //
 SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
 SYSCTL_XTAL_16MHZ);

 //
 // Initialize the UART.
 //
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
 UARTStdioInit(0);

 DRV8824_init();

 //
 // Loop forever while the PWM signals are generated.
 //
 int DesiredStepperSpeed;
 while(1)
 {
 // Reads the 5 bytes from the windows GUI
 SerialBuffer[0] = UARTgetc();
 SerialBuffer[1] = UARTgetc();
 SerialBuffer[2] = UARTgetc();
 SerialBuffer[3] = UARTgetc();
 SerialBuffer[4] = UARTgetc();

 // Switch statement for different commands
 switch(SerialBuffer[0])
 {

 // Write GPIO (DIR DECAY nSleep, nReset)
 case (0x03):
 Direction(SerialBuffer[1] & 0x10);
 nSleep(SerialBuffer[1] & 0x80);

75

 nReset(SerialBuffer[1] & 0x40);
 nDecay(SerialBuffer[1] & 0x02);

 // nEnable & StepLow
 case (0x0C):
 switch(SerialBuffer[1])
 {
 case (0x02):
 nEnable(false);
 break;
 case (0x03):
 STEP_HL(false);
 break;
 }

 break;

 // nEnable & Step High
 case (0x0E):
 switch(SerialBuffer[1])
 {
 case (0x02):
 nEnable(true);
 break;
 case (0x03):
 STEP_HL(true);
 break;
 }

 break;

 case (0x0F):// Pulse 1 Step
 if(SerialBuffer[1] & 0x03)
 {
 stpCount = 1;
 STEP_ON(stpCount, 250);

 }

 break;

 case (0x1A): // move steps
 DesiredStepperSpeed = (SerialBuffer[1] * 256) +
SerialBuffer[2]; //Configure the Frequency Rate
 ulFreq = (4000000/ DesiredStepperSpeed);
 stpCount = SerialBuffer[3]*256 + SerialBuffer[4];
 STEP_ON(stpCount, ulFreq);

 break;

 case (0x16): // Modes
 Mode_0(SerialBuffer[1] & 0x08);
 Mode_1(SerialBuffer[1] & 0x02);
 Mode_2(SerialBuffer[1] & 0x01);

76

 break;

 case (0x17): //Start Stepper

 DesiredStepperSpeed = (SerialBuffer[1] * 256) +
SerialBuffer[2];
 ulFreq = (4000000/ DesiredStepperSpeed);
 AccelRate = SerialBuffer[3];
 AccelTimeBase = SerialBuffer[4];
 ACCEL(62, ulFreq, AccelRate, AccelTimeBase);
 pastFreq = ulFreq;

 break;

 case (0x18): //stop stepper
 DECEL(pastFreq, 0, AccelRate, AccelTimeBase);
 pastFreq = 0;
 break;

 case (0x19): //update stepper

 DesiredStepperSpeed = (SerialBuffer[1] * 256) +
SerialBuffer[2];
 ulFreq = (4000000/ DesiredStepperSpeed);
 AccelRate = SerialBuffer[3];
 AccelTimeBase = SerialBuffer[4];
 if(ulFreq > pastFreq)
 ACCEL(pastFreq , ulFreq, AccelRate, AccelTimeBase);
 else
 DECEL(pastFreq , ulFreq, AccelRate, AccelTimeBase);

 pastFreq = ulFreq;
 break;

 }
 }

}

77

Task Name Duration Start Finish Predecessors
Resource
Names

WBS
Predecessors

Semester 75 days Tue 1/18/11 Sat 4/30/11

Project Planning 12 days Tue 1/25/11 Wed 2/9/11

PCB Fab for DIMM and EVM 14 days Thu 2/10/11 Tue 3/1/11 2

2

 DIMM Standards 6 days Wed 2/9/11 Wed 2/16/11

LT

 Review F1612 Code 5 days Thu 2/17/11 Wed 2/23/11

LT,TJ

 PWM Pins 4 days Wed 2/9/11 Sat 2/12/11

TJ

 USB to SPY wire 4 days Sun 2/13/11 Wed 2/16/11

TJ

 Remove Digital From PCB 14 days Wed 2/9/11 Mon 2/28/11

PAT

 Contact TI 5 days Mon 2/14/11 Fri 2/18/11

PAT[10%]

 Make Webpage Look Better 10 days Tue 2/15/11 Mon 2/28/11

KOLE[20%]

 PCB Tutorials & DIMM Fab 10 days Tue 2/15/11 Mon 2/28/11

KOLE[80%]

 Add Pictures To Website 4 days Wed 2/9/11 Mon 2/14/11

KOLE

Research Coding & Wait for Parts &
Test

37 days Tue 3/1/11 Wed 4/20/11 3

3

 Assemble Boards 32 days Tue 3/1/11 Wed 4/13/11

KOLE,PAT

 Code Cortex 40 days Thu 2/24/11 Wed 4/20/11

LT

 Code F1612 40 days Thu 2/24/11 Wed 4/20/11

TJ

Design Day Prep 8 days Thu 4/21/11 Sat 4/30/11 13

4

78

	LT completed many tasks this semester along with his main tasks he assigned himself this semester, which were creating the pinout for the DRV8824 and MSP430 DIMM along with create the Stellaris header file for the DRV8824. He started the semester off ...
	For the software end, LT was the lead programmer behind creating the header files to be used with Windows GUI along with Pat and TJs Ethernet solutions, with contributions from there code added by TJ. LT created an interrupt for the Stellaris controlC...
	TJ had two main tasks that needed to complete for our project to be successful. One was hardware based and one was software based.
	For the hardware, he looked up everything he could on the MSP430F1612. He figured out which pins were necessary for controlling the motor. He figured out which pins needed to come off of the controlCARD and connect to the DRV8824. TJ analyzed a Ste...
	A smaller task TJ accomplished was going through all of the MSP430 code Design Team 6 had to determine how they set up their code and to figure out what all of the important registers do. From there he looked into all documentation he could find abou...
	TJ’s main software task, was working with Pat on being able to control the Stellaris controlCARD through its Ethernet port. Pat and TJ created a webpage that has the same functionality as the windows application. TJ and Pat programmed the entire pr...

