I3 TEXAS

INSTRUMENTS

Stepper Motor Control

With the DRV8824EVM, MSP430F1612 CC and
Stellaris LM3S9B96 CC

4/25/2011

Leslie Thomas
Patrick O’Hara
Thomas Volinski
Kole Reece

Facilitator: Dr. Bingsen Wang
Sponsor: Mr. Tim Adcock

Executive Summary

Texas Instruments has developed an evaluation module for their newest motor driver the
DRV8824. This evaluation module comes with a MSP430F1612 on board to control the motor
driver. The DRV8824 manages the pulse-width modulation (PWM) while allowing for the
MSP430 to control the DRV8824.

Texas Instruments has moved to a more modular design for their motor drivers. They are
providing the analog DRV models with sockets for their control CARDs. These control CARDs
contain their popular microcontrollers, and allow for motor control with interchangeable
microcontrollers.

To fit the DRV8824EVM into this modular design the board will be partitioned into two
parts, a motor driving board and a control CARD. The motor driving board will have a DIMM
socket that will be able to accept multiple control CARDs that can all have different
microcontrollers onboard. The control CARD will contain the MSP430 microcontroller with a
matching pin out. The multiple microcontrollers on the control CARDs will be able to be
programmed to control the DRV8824 motor driver, and provide a modular approach to motor

control.

Acknowledgments
Throughout the semester there are many people who have aided in the development of

our motor controlCARD and evaluation module. We would like to sincerely thank:

e Professor Michael Shanblatt: for covering our bill when we went way over budget.

e Professor Bingsen Wang: for giving our team the guidance needed and making it to every
Thursday meeting.

e Mrs. Roxanne Peacock: for assisting in purchasing our parts, and communicating
effectively with us throughout the semester.

e Mr. Brian Wright and Mr. Gregg Mulder: for helping us understand the necessary files
for PCB fabrication and for assembling our EVM for us.

e Mr. Greg Motter: for showing us how to complete a FAST diagram and construct a house
of quality.

e Mr. Jacob Scott: for assembling our most difficult PCB and replacing parts when they
burnt out.

e Mr. Tim Adcock: for giving our design team the opportunity to work with Texas
Instruments, providing us with all the hardware and software tools, and keeping in
constant contact throughout the semester.

Table of Contents

EXECULIVE SUMMAIY .ooiiiiiiiiiiiiiiiee ettt e e s ettt e e e s s st b e e e e e s s sssbbtateeeesssasbtbeeeeeessssssstnnaeeesssnnnsnns 1
ACKNOWIEABEMENTSooeiiiiiiiiiieie ettt e e e ee et e e e e e e e st b beeeeeees e tabsaeaeeeeesssataraeaeesesanssrraseaeanans 2
(0] =T <1 =T e USSR 5
T Ay oo [V 4 o] o TSRO P RO TSR PP 5

2 T =] o T o o USSR 8
(0] =T <1 =T USRI 13
Y DT =4 =1 o o [T PPURTTPPPPPO 13
(0o ol=Y oY AU 1T = o PP URUPPRNS 14
Proposed DeSiZN SOIULIONuiiiiiiei e e e e e e st e e e et ae e e e abeeesesraeeeenntaeeeansens 15
Ranking of CONCEPTUAI DESIEN ..occuvveieeiiiieeecitee ettt et e et e e et e e e et ae e e e at e e e e estee e e nbeeeeensbaeeeenreeesennees 16
RISK ANGIYSIS .eeeeiiiiieiee ettt e e e e e e sttt e e e e e e e e e e aataeeeeeeesaastaaesaeeesesnsteeseaeeseaaserenneeaenann 17
oY oo LY=o I 21U To F =] SRR 18
e oTo1Y=To Il o T=Te (1] LTSRS 18

(0 F=T <1 =T SR 20
PINOUL Of DRVBB2A ...ttt ettt sttt st st sttt e b e b e sbe e saeesaeesatesaneeaneeneeneeneens 20
01 B B LYY= o PSSP PPPPPPPPPPPPPPPPPP 23

Y (=] T L TP PP PUO PR 26
DRVBB24 DIIVEIS ..ceeeeeeeeeiteee ettt ettt et s e e s e e st e e s e e e s s r e ne e s mr e e e s e s ne e e s e neneesenrenesennnens 26
WINAOWS GUI .ttt ettt e st e e s bt e e s bt e e sab e e sabeesbeeesabeesabeesabeeeneeesareesanes 29
NETWOTK GUI ...ttt et ettt et s e s s ae e st e e ate e e e e be e b e e b e e neenneennees 32

(0 1= <1 =T U 37
Product VerifiCationco.eeiiiiieiieee ettt ettt et e sbe e s bt sae e st st e e e et eneereen 37
(01T T o1 =T PSS 40
SUMMArY @Nd CONCIUSION...ciiiiiiiieieee ettt e e e crte e e e e e e s tr e e e eeeesesatsbaaeeaeeeeeassssseseeaasesanssseeseeseeannnns 40
FaN e o110 T |G PSSP 43
Technical Roles and RESPONSIDIITIES.......uiiiiiiiii et e e 43
LESHIE TROMIAS ...ttt ettt et s bt e s bt e s bt e s st sae e s bt e s st e et e eat e e b e e b e e b e e be e beenreen 43
THOMAS VOIINSKI ..ttt st sttt ettt e b e b e e b e sneenneennees 45
PALrICK O HAIA ..ottt ettt e s bt e s b e s bt e s bt e s ae e eae e e st e e st e st e et e e be e be e beenbeenaean 47

KOIE REECE ...ttt ettt e sttt et e bt e e sa bt e s bt e e s b e e e sateesabeeeameeesabeesareeebeeesareesareean 49

7Y o] o111 T [RSP 50

REFEIEINCES ... ettt b e bt s b e s ae e s at e e ae e e a et et e e abe e beeabeeabeesbeeaneeeneesabeeaneenreens 50
7Y o« T=T o e [| | SRR 51
B RN E s i Y Yol o= o - L ol P SRRT 51
DRVBB2AEVM BOArd LAYOUL.....ceiiiuiiiiiiiiiieiiiiee ettt e et e e s stte e e s ite e e e sasaeeessteeessnsaeeeesbeeessnnsaeessnsseeessnsens 54
DRV8B824EVM Bill Of MAterials ...cuuveiiiiiiiiiiiiiie ittt e s ee e s ree e e st e e e ee e e snbaeeesnbaeeesnnees 55
MSP430F1612 cONtOICARD SChEMATIC ..evveiiiiiiiiieieeteeteesee ettt st st 56
MSP430F1612 contolCARD BOArd LayOUt........ccuuuiiiieeeiiiiiiiieeee e ccciteee e e e e ssvrne e e e e s e e snnbane e e e e s s s ennnenneees 57
MSP430F1612 contolCARD Bill Of Materialsc.ceeeiiieiiiiiieeiee et 58
MSPA30F1612 CONtOICARD PINOUL ..eiiiiiiiiiiiiiieiiiitee ettt ettt e e sttt e s sree e s abe e e s saae e e s sabae e s ssnbeeessnbeeessnsees 59
Stellaris Control Card SChEMATICciiiiiiiiieiee ettt et s e b e e 60
C2000 F23432 PINOUL ..veeteeiieieenieeniee ettt ettt ettt ettt e s e s bt e sae e s st e saeesmt e st e este et e ebe e b e e neenneenneennees 62
MolexX DIMM 100 FOOLPIINT ...uiiiiiiiieiiiiiieeciitee st e e eere e e s str e e e e ire e e e sareeeesbbeeessabaeeeesseeesasseeessnssaesssnsens 63
DRV8824 SEEIANIS DIIVEL ..cueeiieiiiiieieeie ettt ettt sttt sttt ettt e b e st e sbeesheesaeesasesabeembeenbeeseenseens 66
DRVBB2A.C ..eeeeeieeeeeeet ettt ettt ettt e e e e e e et ee e e e e e e b e bttt e e e e e e anbeeeeeaee e e e bbbeeeeeeeeaanrrreeeeeeeaanannee 66
DRVBB2A.N ettt ettt ettt ettt e sttt e e st e e s et e e e e b b ee e e e b be e e e e bae e e e baee e e abeeeeeabeeeennreas 73
WINAOWS GUI ettt ettt e e sbe e s hb e e st e s bt e e sab e e s ab e e s bt e eneeesabeesabeesaseeesabeesanes 75
DRVBB2A.C ..ttt ettt ettt sttt ettt et e b e e bbbt e bt b e b e s he e e ae e sae e e n e e n e e n e re e reereen 75

LG A\ N PP PP UPPPPPPPTPOR 79

Chapter 1
Introduction

There are many motors on the market today such as the brushed DC, brushless DC, AC
induction, and stepper motors. They are each used for certain applications in many devices
today, including cars, air conditioners and microwaves. Before a motor can be implemented into
a project it is necessary to determine the speeds the motor will operate at and if the amount of
torque will be sufficient for the application. This is why it is a smart idea to build a test circuit or
purchase a developmental kit before implementing a motor in a project. Many motors require a
precise driving system for the control of a motor’s speed and direction. It also needs special
hardware and precisely timed signals to be sent to the circuit attached to the motor. The simplest
solution is to purchase a motor control integrated circuit (IC) and control that IC with a
microcontroller (MCU).

Design Team 6’s (DT6) project focuses specifically on the control of a stepper motor
with a DRV8824, which is a motor control IC created by Texas Instruments (T1). DT6 was given
this 1C on an evaluation module called the DRV8824EVM, seen in Figure 1. This evaluation
module allows the customer to connect a two phase stepper motor to the board and test the motor
with all the controls the DRV8824 has to offer through a Windows General User Interface
(GUI). The evaluation module controls the DRV8824 with an MSP430F1612 MCU, this MCU is

the component that controls the DRV8824 and communicates with the Windows GUI.

- | DRUBBI2/13.14,24,25,28.28.40 .o
" e e] GO &8 un s CPGOOY REV A 0315410 ¢
;

GND

gcm
gcpz
gu:n
@ noumt
€ 1sENA
gmmz
oeouu
@ 1sEne
@ sount

<yun

Figure 1. DRV8824EVM

Since not all customers want to use MSP430F1612 MCU in their projects Tl faces a
problem with appealing to a large market. TI offers a large assortment of MCUs and 3 different
families; they are the MSP430, Stellaris, and C2000 families. TI often puts their most popular
MCUs on dual inline memory modules (DIMM) cards called control CARDs. T1 has many
developmental kits that have slots in them so these control CARDs can be used. Tl has designated
DT6 three tasks to make the DRV8824EVM more modular.

DT6 must replace the MCU on the evaluation module with a DIMM female connector,
this will allow for the customer to insert control CARD into the DRV8824EVM with the MCU
that matches the customer’s needs. The second task is to create a MSP430F1612 control CARD

that will work with the newly modified DRV8824EVM. The third task is to port the code from

the MSP430F1612 control CARD to the Stellaris LM3S9B96 control CARD and demonstrate its

working functions with the Windows GUI.

Background
Stepper motors are a very unique type of motor; they are one of the only motors that need
no feedback to know what the motor will end up doing. One of the reasons for this is because

stepper motors are among the only motors to have axial flux. This means the length of the motor

is polarized instead of the face as seen in Figure 2.
Stator

Figure 2. Stepper Motor showing axial flux

The motor is moved by current excited through the stator at its phases. Figure 3 shows
how the stator would be configure for a 2-phase bi-polar motor. There is an A and B phase and
for each phase there is an opposite phase at a 90 degree rotation of the starting point. To turn a
motor, current would first be sent through Phase A this would attract the teeth of the rotor to the
teeth on the stator and they would align, while A’ would push the teeth away. Next phase B
would turn on and the teeth would move from aligning with A to aligning with B. Then A would
have current sent in the opposite direction turning A’ on which would move the teeth of the rotor
to align with A’ and so forth. This is how a full step would be implemented. Figure 4 further

illustrates the alignment of the teeth.

Figure 4. Full Stepping Teeth Alignment

This method of movement sets the stepper motor apart from other motors because the
stator and rotor never touch, this means great life span. Since the rotor and stator do not touch
there is no mechanical wear. The motor has over speed protection since if the switching speed
exceeds the motors capabilities it will simply stop moving and not damage the motor. Also since

this motor moves one step at a time it has excellent low speed control. There are some downfalls

though. With stator and rotor being separated, the motor requires large amounts of power to
move and it is also much larger than other types of motors with similar torque.

The stepper motor is capable of moving in a higher resolution than just 1 full step. This
is useful because the larger amount of steps the more torque that can be produced. Figure 5
below shows on the left the method just described. Full stepping is created by moving from one
phase to another. This consumes less power but creates very little torque. To gain more torque
more than 1 phase must be turned on at a time. The graph to the far right shows how higher
resolution can be gained by switching between one and two phases. Even higher precision can be

gained by using pulse width modulation on the phases.

One Phase Two Phase One-Two Phase
Input Pubej—} 4 . s l H f tnput Pubin 4 1
B } I . I I |
amd | . alggll e L
m L o |
F piliy Niggiigaiiizsl |
_ | | T A b, | .
A ph i . | i Egn_—-—l [A 1]
m | | | B ! - B ph. i
an- _‘ Enh—l] - 1mmm—n:a:g-;mum
mﬂﬁmmm im plhas i bation mw “.-:::hz,“m in pham excitation af the ene-two-phiss sxitation m
Waveform period is 4 steps Waveform period is 4 steps Waveform period is 8 steps
(Full Stepping) (Full Stepping) (Half-stepping)

+ Better stepper resolution
+ Lower step oscillations
- Higher torque ripple

+ Low power consumption + Higher torque output
- Rarely used today - Large step oscillations
Sowrce: Technical Information on Stepping Motors, Oriental Motor

Figure 5. Stepping Characteristics

DT6 is using the DRV8824 motor driver IC to generate the necessary PWM cycles to

phase A and B. This IC has a very straight forward interface and can power a 24V motor at

10

1.6As. The IC requires one supply voltage from this a 3.3V output is created, this is very nice
since this chip can power the MCU, a separate power supply is not needed. The DRV8824, as

seen in Figure 6, has 7 general port inputs:

nEnable turns on/off the current going to the motor

DIR tells the motor to rotate clockwise or counter-clockwise

MODEQ,1,2 1/2,1/4,1/8 stepping resolution and can be mixed together to make 1/32
nSLEEP puts the motor in/out of sleep mode

NRESET clears all the signals to the motor when input is low

There are two output status pins:

nHOME is set high when 1 full step has been made, and low for all time else
nFAULT is set high when IC has overheated or pulling too much current

There are three analog input pins:
AVREF scales the current through Phase A based on the voltage at this pin
BVREF scales the current through Phase B based on the voltage at this pin
DECAY scales the decay of the PWM signal based of the voltage at this pin
There is one pin that takes a pulse:

STEP every rising edge the motor moves 1 step

There are four outputs that connect directly to the motor:

AOUT1 Phase A
AOUT2 Phase A’
BOUT1 Phase B
BOUT?2 Phase B’

ISENA and ISENB can be used to measure the current running through Phase A and B

respectfully. Having nHOME and nFAULT is a really great feature since they can be tied back to

the controlling MCU and handle the event of a fault and also determine if the motor is running at

the correct speed.

11

=
b
=

R

"]

U

LT

)

A

@
B

+

o

Figure 6. DRV8824

12

Chapter 2

Fast Diagram

Before beginning the actual design work of the project, DT6 had to sit down and figure

out all of the components that were needed to complete the project. The first step in this process

was to create a FAST diagram which outlines every process that is needed to control the motor.

The diagram can be seen below in Figure 7.

Connect to
Power Supply

Provide Power

Control
Stepper Motor

— Get User Input

Send Driving Generate
Signals Drriving Signals

Program
Microcontroller

Establish
Connection to
MCU

Figure 7. Fast Diagram

As seen in Figure 7 the most important processes to control the motor are sending driving

signals, generating those driving signals, getting user input and programming the

microcontroller. These processes are the main parts of the design. To send the driving signals

DT6 will have to create a driver board with the DRV8824 IC. What will generate these signals

to drive the motor? This will be done by two microcontrollers, the MSP430F1612 and the

Stellaris LM3S9B96. They will need to connect to the DRV8824 board, so a DIMM slot will be

implemented on the board and the microcontrollers will each be placed on their own

13

controlCARD. After these steps are completed DT6 will have to program the microcontrollers to

accept user input from the windows application to control the motor.

Conceptual Design

DT6 now knows what parts are needed for the design. There are a total of five physical
components to the design. As shown in Figure 8, these components are: the PC, the
controlCARD with the MSP430, the control CARD with the Stellaris, the EVM board which has
the DRV8824 and the stepper motor. The PC will communicate with the controlCARDs by a
USB connection. The PC will also be able to communicate with the Stellaris by Ethernet. It will
also use the USB connection to program the microcontrollers. The PC also has a GUI that will be
able to sends signals to the microcontrollers. Each control CARD is connected to the DRV8824
through the DIMM100 slot that will be installed on the EVM board. The microcontrollers will
process the signals from the PC and then send the signals to the DRV8824 which will drive the

motor.

,[MSP430 |y

PC DRV8824 | g | MOTOR

~ ' e

STELLARIS
M3

Figure 8. Completed System

14

Proposed Design
The proposed solution encompasses the hardware redesign of the DRV8824 evaluation
board, and the design of the MSP430F1612 DIMM controlCARD. In addition, software to
control the motor will need to be ported to the Stellaris M3 DIMM cards. The hardware redesign
consists of removing the digital section of the DRV8824EVM and replacing it with a DIMM
slot. To achieve this, the pin outs of the M3 Cortex card will be carefully studied in order to
design a functional MSP430F1612 control CARD.
There are three major steps for accomplishing our project.
e Removal of the MSP430F1612 and definition of DIMM ports
The DRV8824EVM has a MSP430 microcontroller on board that will be
removed. There will then be input and output wires that need to be connected to
the DIMM slot. The DIMM ports will be ported based on the pins of the Stellaris
controlCARDs, so both can control the motor driver.
e Design of MSP430F1612 control CARD
Once the definition of the DIMM ports is selected then the design of the
MSP430F1612 control CARD can take place. The code will be the same that the
DRV8824EVM came stock with, but the controlCARD will be a removable
extension of the DRV8824EVM.
e Caoding of the Stellaris control CARD
Since the Stellaris has never been programmed to work with the DRV8824 motor
driver before, the code from the MSP430F1612 will be ported to the Stellaris
controlCARD. This will require much porting of 16-bit registers to 32-bit

registers. The reason this will work is because ARMs architecture allows for 32-

15

bit micro-controllers to still run 16-bit instructions.

Ranking of Conceptual Designs

The next part of the design was to figure out which components were most important to

the final design and which parts needed more time to be completed. This was accomplished by

creating a house of quality to determine the critical customer requirements (CCRs) of the project.

The house of quality can be seen below in Figure 9.

L]

=

S

5 T

Design Criterion % g - " g

m [[} L=] E 0

el &l 8| §| 53| 8

2l g 3| &| e|®| &
Elan| & 5| 8|8 5| ¢
Motor Control AFA\K JK 3K A e A
Comunication with Motor 5 é . O O & & O
Cost 3 ﬁ O O O ﬁ ﬁ ﬁ
Power 3 . 0 O 0 ﬁ ﬁ &
Aesthetics 2 ﬁ ﬁ, ﬁ. ﬁ. @ (0] ﬁ.
Safety 4 0 0 O 'O ﬁ. ﬁ. ﬁ.
Revisable Software 4 -ﬁ .ﬁ. ﬁ .ﬁ 0 @ ﬁ
B c] ool ool 1ol

Figure 9. House of Quality to determine CCRs.

® Strong (9)
0 Moderate (3)
A Weak (1)

As shown in Figure 9, the components of the design and the design criterion were

compared. Each design criterion was given an importance value (1 being least important, 5

being most). Then each component is compared to each of the design criteria and assigned a

16

value of 9, 3, or 1. Then by multiplying the importance value with the correlation value and
adding up each column, the resulting numbers at the bottom of the table are calculated. The
values highlighted green are the most vital parts of the design. Whereas the values highlighted
red do not have much to do with the design portion of the project. DT6 concluded that the most
important part of the project was to finish the DRV8824 EVM. This was because without a
working EVM it would be impossible to have a running stepper motor by design day. The two

controlCARDs and programming of the cards were also very important to the design.

Risk Analysis

There are some major risks associated with our project. Figure 10 below lists these risks.
Each risk is given a rating of 1,3 or 6 for the impact of the risk and the likelihood it occurs. 1 is
for low risk and 6 is for high risk. These two categories are multiplied together for each risk to
get the final risk value. DT6 has concluded that an incorrect DRV8824 design would greatly

affect DT6’s ability to finish the project

Level of -
Risk Effect Impact Ll{l;elghgnd Score
(]1 31 ﬁj L }
Delayed PCB | Delaved PCB a
) U 3 3 9
lavout Design | Fabrication
Delayed PR | Delayed code |
e Debugging 6 1 6
Fabrication .
and Testing
[ncorrect Inability
DRV&824 nabrity to 6 3 18
_ control motor
Design
MSP430
[ncorrect DIMM
MSP430 rendered - 3 9
DIMM useless. >
Design Stellaris still
valid.
Figure 10. Risk Analysis Chart

17

Proposed Schedule

Since the EVM was the most important part of the design, DT6 decided the first task that
needed to be completed was the DRV8824 board. This is also due to the amount of time it
would need to be fabricated. This board as well as the MSP430 control CARD needed to be
completed early in case there was a mistake and needed to be re-fabricated. DT6’s goal was to
complete the design of these two boards by 3/1/11. The DRV8824 EVM was actually finished
3/3/11 and the control CARD was finished 3/21/11. The EVM was finished roughly on time and
the control CARD was a couple weeks late. This was not a huge problem because DT6 had
planned for delays in the design process in their GANTT chart. DT6 also planned to be done
with coding the Stellaris control CARD by 4/20/11. This task was successfully completed on

time. DT6’s GANTT chart can be seen in its entirety in the appendix.

Proposed Solution Cost

Although DT6 spend over $1000 designing there DRV8824EVM and MSP430F1612
controlCARD this could be reduced by mass producing the product. The production of the two
boards can be broken down into several different items. Fabrication of the printed circuit board
for the DRV88xXEVM is estimated at $25 per board for large quantities. Parts for each board
would be estimated at $20 also when ordered in bulk. The final part of the production for the
hardware is the assembly which is estimated at about $25 per board. As with anything, the cost
associated with each board manufactured decreases as the number of boards increases.

After the EVM and the control CARD are produced they are ready for distribution. Texas
Instruments has a vast website containing all of their solutions to motor control. These solutions

can be ordered off of the website or over the phone with a sales representative. The

18

DRV8824EVM would be priced comparably to the other evaluation modules at $100 per board.
Tl also has multiple warehouses located in several locations which will allow for the product to

be produced in large quantities and stored until the customer places an order.

19

Chapter 3
MSP430 control CARD Pin Layout

A major part of the MSP430 control CARD design was to decide which MSP430 pins
would connect to the pins on the actual control CARD. The first part of developing a design was
to figure out which pins on the microcontroller were vital to motor control. This was
accomplished by analyzing the DRV8824 EVM schematic and DRV8824 datasheet. The
schematic shows the entire DRV board wiring connections including which MSP430 pins send
signals directly to the DRV8824 and hints at what registers the MSP430 is using. From this
schematic there were a total of 20 pins that were directly related to controlling the stepper motor.
These pins were the following:

e P3.0-SELO//P3.1-SEL1
0 Select signals used to determine which type of motor driver IC is connected to
the microcontroller.
e P4.1-GDECAY
o Decay signal where a low value corresponds to a slow decay and a high value
corresponds to a fast decay.
e P4.2-nEN
o Enable signal. Motor is enabled when this value is low.
e P43-STP
o PWMsignal. This is the signal that determines the speed of the motor. The
motor will step on each rising edge, so the higher the frequency the faster the
motor will run.

e P44-DIR
o Signal that controls the direction that the motor spins.
e P45-NC

0 No connection pin. Even though this is a no connection pin, this NC pin on
the MSP430 is connected to the NC pin on the DRV8824 so the signal still
needs to be able to leave the control CARD.

e P4.6-nRESET

0 When reset signal is low system is reset.
e P4.7-nSLEEP

0 When sleep signal is low system is put to sleep.
e P5.0-MD2//P5.1-MD1//P53-MDO0

20

0 Mode 0-2 signals. These signals are set to a certain combination to cut the
speed of the motor by 1/2, 1/4, 1/8, 1/16, or 1/32 of full speed.
e P52-nHM
0 The home signal is set low when the stepper motor is at the home state.
e P6.6 - AGVREF // P6.7 - BGVREF
0 These signals are analog reference voltages for bridge A and B.

The remaining 5 signals that need to come off of the control CARD are the necessary
signals for JTAG. JTAG is mainly used for downloading and debugging integrated circuits.
These signals include TDI and TDO which are the input and output signals. There is also the
TCK and TRESTNn signals which are the clock and reset signals for debugging. The final signal
is TMS, this signal is the test mode select signal. The DRV8824 EVM schematic can be seen in
its entirety in the appendix.

Now that the important signals are known, the next step in the pin layout process was to
figure out which controlCARD pins should be connected to the signals listed above. This was
done by comparing existing control CARD pin outs to figure out some standards of control CARD
design. The MSP430 control CARD pin out was based on the layouts of two other
controlCARDs. These cards were the Stellaris LM3S9B95 and the C2000 F28335. By
analyzing these cards some similarities were noticed. First some background on the 100 pin
DIMM card. The 100 pin card has 50 pins on each side, and each side is broken into three
sections of pins. The first section has 6 pins, the seconds has 16 and the third has 28 pins. The
first section on both cards had 2 pins connected to an isolated 3.3V and included the TX and RX
pins. These pins are the receiving and transmitting pins used in the UART protocol. This
protocol is used for communicating with the microcontroller through Recommended Standard
(RS232). The second section is where all of the analog signals were placed and the third section

is where all of the GP10/Special function signals were connected. Another similarity noticed

21

was that all of the ground and 5V pins were the exact same on both layouts. It was also noticed
that the last few GPIO pins is where they placed the JTAG signals on both cards.

With all this information gathered, it was time to actually pick the controlCARD pins for
the signals. For the MSP430 control CARD, all of the ground and 5V pins were placed in the
same location as the Stellaris and C2000 cards. The two important analog signals, AGVREF and
BGVREF, were connected in the second section because that is where the Stellaris cards had the
analog signals. The JTAG signals were placed at the bottom of section three and all the other
important GP10 signals were placed at the beginning of the third section since this is where
PWAM is located. After all of these pins were placed, the other signals were just connected to any
open control CARD pins. The final MSP430 control CARD pinout can be seen in the appendix as

well as the pin layouts for the Stellaris LM3S9B95 and the C2000 F28335.

22

PCB Design

A large part of DT6’s project was to modify current hardware and create new hardware,
the new DRV8824EVM and the MSP430 conrolCard. For both of these items, the Altium
Designer software package was used to generate the design files. Altium is a professional grade
printed circuit board, PCB, CAD software package. While Altium has a relatively steep learning
curve, it is a very powerful tool capable of creating complex circuits on a large scale. Texas
Instruments is moving towards using this software for all their PCB designs, which is why DT6
chose to use the tool.

The first circuit that DT6 created was the DRV8824EVM. This is an evaluation module,
EVM, for control of a stepper motor. The EVM previously contained the MSP430F1612
microcontroller on the circuit board. Texas Instruments required that the MSP430 and all
supporting circuitry be removed from the EVM and replaced with a DIMM socket. The design
files for the original EVM were provided for modification. The EVM is four layer printed circuit
board. There are two main routing layers, top and bottom layers, one ground plane layer, and a
third routing layer used strictly for test pins on the EVM. The use of a ground plane is very
useful as it removes the need to route ground to every component on the circuit that is connected
to ground. Alternatively, all that is required is to create a via down to the ground plane near the
component connected to ground.

While modifying the original EVM design files, there was one problem that proved to be
the most challenging. The footprint for the DIMM sockets proved to be difficult to find. The
required libraries were not included with Altium. Altium hosts several libraries containing many
different manufacturers’ parts on their website. Once the required library was located all that was
left was routing the signals to their appropriate place. As mentioned earlier, and located in the

appendix, the appropriate pin connections were already determined.

23

The second PCB design that was required was the design of the MSP430 control CARD.
The control CARD is a 100-pin dual inline memory module containing the MSP430
microcontroller and supporting circuitry previously on the EVM. The controlCARD is also a
four layer board containing the same top and bottom layers, ground plane, and a third routing
layer. The control CARD however has several other aspects that are different from the EVM.
Because the control CARD needs to fit into a defined socket it has specific dimensions, defined in
the appendex.

These dimensions proved to be one of the more challenging aspects related to the
control CARD. As there was no template containing the appropriate dimensions for the
controlCARD, the card was created from scratch. AutoCAD was used to create a drawing
containing the correct dimensions. This drawing was imported into Altium to create the basic
board layout. Once the board dimensions were set in Altium design could continue.

The control CARD proved to be more challenging because it requires custom
specifications. These specifications refer to the contact points on the edge of the card. These
contacts are called “gold fingers” and required a specific layout to be correct. This layout was
not documented very well. Contact was made with several Altium representatives to determine
the correct layout. The card edges require the solder mask to cover all of the pins, however the
paste for the pins must have a negative overlap with the top and bottom layer pads.

Overall both PCB designs were successful. Both are fully functional and operate as
expected to control the motor. A few minor changes to the control CARD are recommended if a
second iteration were to occur. The first modification is to add vdd and ground vias to allow the

controlCARD to be powered externally aside from USB. Pins 1 and 51 would also be changed to

24

3.3V Isolated. DT6 would also change the 3.3V signal on the EVM to be supplied from the

output of the DRV8824 instead of being supplied from the DIMM.

25

DRV8824 C++ Driver

This project included porting code from the MSP430F1612 to the Stellaris LM3S9B96.
To accomplish this, research of datasheets and TI forums was necessary. The end goal was to
create a header file that would contain all the information to control a DRV8824 with a Stellaris
MCU. The resulting code looks much different than the MSP430 code because the Stellaris
differs from the MSP430 in many ways; including processing speed, number of pins, number of
special functions each pin has, and way code is written.

The MSP430F1612 is a 8MHz MCU which contains 64 pins, 48 of which can be used as
General Port Input Output (GP10). The Stellaris LM3S9B96 is a 80MHz MCU which contains
100 pins. MSP430s pins have generally only 2 functions, 1 being GP1O which means it only
outputs or inputs a high/low signal, and 1 special function such as communication, pulse width
modulation (PWM), or analog to digital converter (ADC). The Stellaris” have GPIO on all pins
and many special functions. This is because the Stellaris architecture has muxing inside the chip
that allow for the switching of functions between pins.

To being porting the code DT®6 first had to learn how the MSP430 handled the control of
the DRV8824. The general programing method for the MSP430’s are there is a list of variables,
these variables can represent control registers and bits in the control registers. For example the
code below P1DIR is saying that the direction register of port 1 is going to be set to what is on
the right hand side of the equal sign, since BITO is on the right hand side then P1.0 is now an
output, and the next like PLOUT sets the port 1 registers output, and since BITO is there again

now the pin at P1.0 will have a 3.3V output.

P1DIR = BITO; // turn LEDS off
P10UT |= BITO; // make LEDS outputs

26

Now for the Stellaris on the other hand uses variables to represent registers and control bits but it
sets them with functions. The code below is how the Stellaris sets port AO to 3.3V.
SysCtlPeripheralEnable() function is used to set ports to GPI1O or their specific special function.
GPIOPinTypeGPIOOQutput() function takes the base port (A-H) and the pin (0-7) and sets the
direction register to an output at that pin. GPIOPinWrite() function set the pin to an high or low

output.

SysCtlPeripheralEnable(SYSCTL_PERIPH _GPIOA);
GPIOPinTypeGP100utput(GP10_PORTA_BASE, GPIO_PIN_0);
GPIOPinWrite(GP10_PORTA_BASE, GPIO_PIN_O, GPIO_PIN_0);

This may look like more work but setting up function like this is makes it very simple to
implement the special features in the code.

DT6 has created a header file that drives the DRV8824, it includes the functions to
accelerate and decelerate the motor. There is also function that set the GP1O pins on the
DRV8824 and the frequency of the pulses. Below is a list of the function that controls the non
GPIO features. DRV8824 init() is a function that initializes all the ports to the DRV8824 and
sets the PWM to a 50% duty cycle. Frequency takes a number in hertz then sends that frequency
to the PWM. ACCEL and DECEL, accelerate and decelerate the motor starting at the current
frequency at time of call to a desired frequency at a certain acceleration rate and acceleration
time base. The STEP_ON() function is used to move the motor a certain amount of steps.
STEP_HL() inverts the PWM signal.

extern void DRV8824 _init();

extern void Frequency(ulFreq);

extern void ACCEL (pastFreq, newFreq, AccelRate, AccelTimeBase);
extern void DECEL (pastFreq, newFreq, AccelRate, AccelTimeBase);

extern void STEP_ON(cnt, Freq);
extern void STEP_HL (output);

27

Every GPIO pin on the DRV8824 has a corresponding function to set it that pin to a high
or low signal and the function is in the format of PinName(High/Low). All of the actual pins are
defined in the header so there is no need to call the pin name directly this makes it very easy to
switch to other Stellaris MCUs. The code below shows an example of how to change the
Direction pin on the DRV8824, since DT6 has placed defines at the top of the DRV8824 header
now simply replace GPIO_PORTA_BASE and GPIO_PIN_5 with the correct pin on the
control CARD the customer is using and the code will be executable.

#define DIR_BASE ~ GPIO_PORTA_BASE
#define DIR_PIN GPIO_PIN_5

DT6 overcame many problems when creating this header file. When running a stepper
motor even when it is running at full speed with microstepping on it is still under 100KHz, and
since the Stellaris runs at 80MHz it was causing issues with accurate PWM signals at low
frequency. This was eventually overcome by dividing the clock by 4 and then another 16, this
reduced the frequency of the PWM cycle to a max of 1.25MHz, this eventually allowed for the
bandwidth of speed for the stepper motor to be better than the MSP430. Another issue DT6 had
to overcome was to implement the ability to count the number of pulse that had gone by. Since
the Stellaris uses function that implement interrupt and there was no function that counted PWM
cycles DT6 had to come up with a solution. This problem was eventually solved by creating an

interrupt that could count each time a pulse went from low to high.

28

Windows GUI

One of DT6’s major task was to implement the Stellaris motor driving code with the
Windows GUI, this involved learning how the Windows GUI communicated with the MSP430
and how to take these inputs and create a desired output on the motor through the Stellaris MCU.
Almost all of Tls solutions offer a USB to COM options, this means that when a USB is plugged
into the computer it is recognized as COM port (Serial Port), this is one of the simplest
communication protocols to implement because it can communicate with as low as 2 wires.

Below is the code to initialize UART which | the serial communication protocol.

//
// Initialize the UART.
//

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
GPIOPinTypeUART(GPIO_PORTA BASE, GPIO_PIN_O | GPIO_PIN_1);
UARTStdiolnit(0);

Next the Windows GUI communicates at 9600 bauds, no parity bit, data bits 8, 1 stop bit, and no
flow control. So to implement this in the Stellaris code the line that contains communication

parameters in UARTStdiolnit() need to be changed to the code below.

MAP_UARTConfigSetExpClk(g_ulBase, MAP_SysCtlClockGet(), 9600,
(UART_CONFIG_PAR_NONE | UART_CONFIG_STOP_ONE |
UART_CONFIG_WLEN_8));

The Windows GUI sends the MCU 5 bytes of information, the first byte contains the operation
code, and this is either the GP10, DAC, Step, or Pulse setting. The remaining 4 bytes contain
information for each of the parameters and change depending on what is being typed into the
GUI. The MCU only sends 3 bytes back containing its firmware revision code. There are 9

operation codes that are used for the stepper motor and they are listed below.

Write GPIO Data
[OPCODE = 3][GPIO DATA][Not Used][Not Used][Not Used]

Disable PWM
[OPCODE = OxOC][Timer #][Not Used][Not Used][Not Used 7]

Set Timer Output

29

[OPCODE = OxOE][Timer #][Not Used][Not Used][Not Used]

Pulse Timer Output
[OPCODE = OxOF][Timer Used][Pulse Length Hi][Pulse Length Lo][Not Used]

Write GPI0 Data on SPI Port
[OPCODE = Ox16][GPIO DATA][Not Used][Not Used][Not Used]

START STEPPER
[OPCODE = Ox17][Frequency Hi][Frequency Lo][Accel Rate][Accel Time Base]

STOP STEPPER
[OPCODE = 0x18][Frequency Hi][Frequency Lo][Not Used][Not Used]

STEPPER_SPEED
[OPCODE = Ox19][Frequency Hi][Frequency Lo][Accel Rate][Accel Time Base]

MOVE_STEPS
[OPCODE = Ox1A][Frequency Hi][Frequency Lo][STEPS Hi][STEPS Lo]

The best way to implement this communication protocol is to store the 5 bytes that are received
from the Windows GUI into a buffer and then use case and if statements to determine the
operation that needs to be performed. Below is the base case statement for the operation code,
this is the same as the MSP430 code, but entering the code for each case statement things now

have to be changed.

// Switch statement for Operation Code
switch(SerialBuffer[0])
{
case (Ox03): // Write GPIO
case (OxOC): // nkEnable & Step (Low)
case (OXOE): // nkEnable & Step (High)
case (OXOF): // Pulse 1 Step
case (0x16): // Modes
case (Ox17): // Start Stepper
case (0x18): // Stop stepper
case (0x19): // Update stepper
case (Ox1A): // Move Steps

}

Sense the MSP430 calculates frequency based of number of counts in the timer and the Stellaris
uses a function that take a frequency in hertz the Stellaris has to convert timer counts to a usable
frequency. Below is how the start stepper case is handled, the first byte contains 17 which

activates the start stepper case statement, now the next two bytes are used to get the 16 bit timer

30

count that is used for frequency. This is why SerialBuffer[1] is multiplied by 256 then added to
SerialBuffer[2], so this give a number that does not represent a frequency, but since the MSP430
IS running at 4MHz the frequency can be calculated by dividing 4MHz by the timer count.
SerialBuffer[3] is the acceleration rate and SerialBuffer[4] is the acceleration time base, this is
all the parameters needed for the ACCEL() function. ACCEL() is going to now accelerate the

motor from 0 Hz to (ulFreq) Hz at a rate of (AccelRate) Hz per (AccelTimeBase) milliseconds.

case (O0x17): //Start Stepper
DesiredStepperSpeed = (SerialBuffer[l] * 256)
+ SerialBuffer[2];
ulFreq = (4000000/ DesiredStepperSpeed);
AccelRate = SerialBuffer[3];
AccelTimeBase = SerialBuffer[4];
ACCEL(C O, ulFreq, AccelRate, AccelTimeBase);
pastFreq = ulFreq;
break;

DT6 was faced with some problems when connecting the Stellaris to the Windows GUI since the
GUI was not optimized for the Stellaris but the MSP430. The Windows GUI was created to send
information to go directly to a register on an MSP430 meaning that SerialBuffer would be the
only variable on the right hand side of an equal sign. This meant that the Stellaris code in certain
portions had to do conversions before having useful data to generate an output. DT6 also
discovered inaccurate commenting in the original MSP430 code provided by TI, this added
confusion to the project when bytes from the Windows GUI were not cooperating with the
Stellaris code when following the guidelines of the commented code. There was one problem
that could not be avoid and that was the implementation of the DAC, this was not able to work

with the Stellaris because the MCU provided does not have a DAC on the chip.

31

Ethernet Motor Control

The Stellaris LM3S9B96 has an Ethernet port attached to it, so DT6 decided it would be
useful to be able to control the motor through this port. The Stellaris family of microcontrollers
is used for graphical LCD screens and networking. DT6 added the goal of creating a webpage
that would have the same capabilities as the Windows GUI to control the motor.

The first step was to figure out how to program the Stellaris control CARD. DT6 found
some samples of code online that would be a good starting point for this portion of the project.
The program that was used as a starting point for this GUI was a program that demonstrated
controlling the Stellaris card through the Ethernet port by pressing a button on the webpage that
would turn the user led on and off.

The next step was to create a webpage that looked very similar to the Windows GUI and
had the same functionality as that application. Figure 11 shown below is a snapshot of what the

webpage looks like.

Stellaris® LM3S9B96 Control Card

ﬁ' MICHIGAN STATE
UNIVERSITY

Stepper Motor Control

Control Signals Speed Control Stepper Speed Calculator Step Control
[DIR Pulses Per Second (PPS)| - |DegreesOfMicrostepping: Pulse Step (1 Step)
[CJ nEnable Accel Rate (0-255) 200 |Motor's Steps Per Revolution O] STEP Control HILO
] DECAY Time Base (0-255 ms) 0 |Revolutions Per Second (RPS): # of Steps (0-65535)
[CJMODEO | StanSteps || Update Speed | 0 |Revolutions Per Minute (RPM)- |Move Steps
7] MODE 1 | Stop Steps | Compute |
] MODE 2
[nSleep
[[] nReset
’ TEXAS Copyright ® 2011 ECE Design Team 6, Michigan State University.
INSTRUMENTS

Figure 11. Motor Control Webpage

32

All of this code was written in HTML with embedded JavaScript. The way the code
works is once a button or check box is clicked a function in the JavaScript will be called. This
function will then create a string and place this string in a buffer that gets sent to another
program. Each button and checkbox has its own function associated with it. For example when
the button “start steps” is pressed the values in the “pulses per second”, “accel rate” and “time
base” boxes are read in the JavaScript function. From there a string with all of the above
information is created and sent to another file where all the calculations will be done. The code
for the above webpage can be found online at

http://www.egr.msu.edu/classes/ece480/capstone/springl1/group06/index.html.

Now that the information from the webpage has been received the actual calculations can
be done. IAR Embedded Workbench was the debugging program used to write the code and
program the microcontroller. There are 3 main files that DT6 wrote for relaying the information
from the webpage to motor. The first file is just used to look at the string sent from the
JavaScript and call the appropriate functions. These function calls could be in either of the other
two files. One of the files, the DRV8824 driver file, is also shared by the Windows application
program. It includes functions to initialize ports, turn certain signals on an off and PWM signal
creation. This is where all the actual work is done. The other file is only used by the Ethernet
motor control program. This file will parse the string to extract values such as PPS and convert
them into decimal form. It also handles any functions that are not common to both the webpage
and the windows application.

The process of how the information from the webpage gets to the motor will now be
shown. The function code for starting the motor will be used as the example.

<input id="start steps" wvalue="Start Steps" onclick="startSteps():" type="button">

33

http://www.egr.msu.edu/classes/ece480/capstone/spring11/group06/index.html�

The above line of HTML code calls the function startSteps() when the “start steps”

buttons is pressed.

function startSteps()

{

rate and time base from the webpage form. It then sends an http request to communicate with

var req = false;

var pps_txt = document.getElementById("pps");
var accel rate txt = document.getElementById("=z
var time base txt = document.getElementById("ci
document.inputForm.start_ steps.disabled = true;

document.inputForm.update_speed.disabled = false;

document.inputForm.stop steps.disabled = false;
if(is_int(pps_txt))

{
if(window.XMLHttpRegquest)
i
req = new XMLHttpRequest():
}
else if(window.RActiveXCbject)
{
req = new ActiveXObject("Microsoft.XMLHTTP
}
if(req)
i
req.open {"GET", "/cgi-bin/startSteps?pps="
+ time base txt.value + "£id" + Math.r
req.send (null) ;
}

The above JavaScript function first grabs the values of pulses per second, acceleration

Dz

+ pps_txt.value + "Zaccel rate="
andom() ,

+ accel rate_txt.value + "Ztimes bas

the program loaded on the microcontroller. If that request is successful it sends a string denoting

that start steps has been pressed and it also includes the values of the three values obtained

earlier.

34

// Process request to start stepping
else if{ scrncmp{name, "/cgi-bkin/startSteps?pps=", y = 0}
i

=static char pcBuf[€]

Start =

'# Set stepper speed

io_set stepper speed(name + ¥

ptFile->data = pcBuf;

ptFile-»>len = strlen(pcBuf) ;

ptFile-»>index = ptFile->len;

ptFile-»>pextension = NULL;

return({ptFile) ;

The above if statement looks for the startSteps string. If it finds it, it will call the function

i0_set_stepper_speed and send the piece of the string that contains the three values to that

while((*ppsBuf >= '0') && (*ppsBuf <= '°2"))
void ¢
io_set stepper speed(char *ppsBuf) W1ACC #= .
{ UlACC 4= (¥ppsBuf - '0'):
unsigned long ulPPS; ppaBuf++;
uns d long uwlACC; }
unsigned long ulTB; while (! {(%ppsBuf »>= '0') && (*ppsBuf <= "2')))
{
W1FPS = , ppsBuf++;
ulACC =
ulTB = while((*ppsBuf >= '0') && (*ppsBuf <= '9")
{
L ulTB #*=
// Parses the passed buffer into decimal wvalues ulTB 4= (*ppsBuf - '07):
// of PP5, Rcceleration Rate, and Time Base ppsBuftt;
7/ i
while((*ppsBuf >= '0") && (*ppsBuf <= '927}))
i ff If values are valid start motor
ulFF5 *= : /'
ulPPS += (*ppsBuf - '0"); if (ulPP5 <= && uUlACC <= && ulTB <=)
ppsBuf++; {
} v 5
while (! ((*ppsBuf >= '0') && (*ppsBuf <= '2'))) {{ Accelerate motor from 0 to PPS
t Buf . ACCEL(0,ulPPF5,ulACC,ulTB) ;
ppsBuf++; wlFregCURR = ulPES;
¥ '

ulACCpast = ulACC:
ulTBpasat = ulIB;

The above function first parses the three values form the string and converts them into
decimals. Then it checks to see if the values are legal inputs. Then the values get sent off to the

ACCEL function where the actual signals will be set.

35

vold ACCEL({=igned long pastFreqg, signed long newFregq, unsigned long AccelRate, unsigned long AccelTimeBase)
i
PWMCutputState (FWM_BASE, PWM_OUT_4 BIT , true);
while(newFreq > pastFreq)
1
SysCtlDelay(((SysCtlClockGet()/2) / | fhccelTimeBase)))
pastFreq = pastFreq + AccelRate;
Frequency (pastFreq) ;
}

Frequenecy (newFredq) ;

}

volid Frequency(signed int ulFreq)

i

un=igned long uwlPeriod = Sy=sCtlClockGet () f (ulFregq *1&) !
PWMGenPeriodSet (STEF_PWM, STEP GEN, ulPeriod);

'/ Set PWM to a duty cycle of 50%.
FWMFPulseWidthSet (STEF_FWM, STEF _OUT, ulPeriod / 2):

The ACCEL and Frequency functions are shown above. The ACCEL function keeps
stepping the frequency up based on the time base and acceleration rate. Every time it does this it
calls the frequency function which is where the new PWM step signal with the new frequency is
created. So the PWM keeps stepping up its frequency until it reaches the desired frequency.
This is basically how the controlling the stepper motor through a webpage works. All of the
above code with all of the functions can be found in its entirety online at

http://www.egr.msu.edu/classes/ece480/capstone/springl1/group06/index.html.

36

http://www.egr.msu.edu/classes/ece480/capstone/spring11/group06/index.html�

Chapter 4
Product Verification

The two PCBs fabricated by DT6 can be seen in Figure 12 below. To see full
demonstration video of the DRV8824EVM and MSP430F1612 CC working, please visit DT6 at

http://www.egr.msu.edu/classes/ece480/capstone/springl1/group06/media.html. This

demonstration will show that the hardware is correct and demonstrates the functionality of the

Windows and Ethernet GUI.

: DRUVBB0T] 21 3,19.,3% 20040
= CRGIO4 REV B t0-21-20010

E} TouT1

um

9~

Figure 11. MSP430F1612 CC and DRV8824EVM

37

http://www.egr.msu.edu/classes/ece480/capstone/spring11/group06/media.html�

In order to prove some of the functionality of the DRV8824EVM in this paper let’s look
at some waveforms produced from running the motor. The first waveform (Figure 13) shows the
input of the STEP pin that is generated by the Stellaris. This is the pulse 1 function of the

DRV8824 Driver.

Figure 12. Pulse 1 Step
The next waveform (Figure 14) shows the STEP_ON() function being implemented with

an input of 5 steps and a frequency of 1KHz. This waveform shows exactly that there is 5 pulses

1 ,I e

EE

b
i

38
Figure 13. Pulse 5 Steps

in succession and the frequency markers state it is 999.997Hz which is 1KHz.
This last waveform (Figure 15) shows the output slowing down from 1KHz at an
acceleration rate of 100Hz per 40ms using the STOP() function. The waveform shows a 200Hz

and 100Hz pulse next to each other which is the expected output.

Figure 14. Stop Function

In conclusion, DT6 code for the Stellaris is fully function and works better than the
MSP430 that was provided by TI. DT6 coded Stellaris works better because the faster speeds of
the Stellaris allow the PWM to generate faster frequencies then the MSP430. Both fabricated
boards work and have been tested extensively, every pin on the MSP430F1612 and Stellaris
LM3S9B95 has been turned high and low through code and checked at the output on the
DRV8824EVM to ensure the hardware is correct. The MSP430 control CARD was loaded with
the code provided by Tl and tested against the original DRV8824EVM to ensure they compared.
Code was developed for the Stellaris and tested with an oscilloscope as seen above till DT6 was

confident the code was fully functional.

39

Chapter 5
Summary and Conclusions

Texas Instruments has been working on making their evaluation modules more modular.
They have many customers and most customers prefer different microcontrollers. Customers
want their boards to be able to accept any type of TI microcontroller to control the driver IC that
is that board, but TI does not want to design a new board for every customer. They want to be
able to design one board to sell to all customers, and have the customer buy a control CARD with
the microcontroller of their liking. This will save Texas Instruments and their customers a lot of
money, along with allowing Texas Instruments to produce a larger inventory because only one
type of evaluation module will need to be produced. TI has tasked DT6 with creating one of
these EVMs from a non-modular EVM and a controlCARD to fit the new EVM, while
programming another control CARD to be compatible with the new EVM. DT6 had the
following three main tasks to accomplish.

e Design a new DRV8824 board with a control CARD slot.
e Design a MSP430 control CARD that was compatible with this new board.
e Program a Stellaris control CARD to control the DRV8824.

Task 1 was designing a new DRV8824 board with a control CARD slot. The board was
designed and sent out to the fabrication house roughly on time according to the schedule.
Testing of this board was a success, although there was a minor setback. A power supply was
hooked up in reverse and as a result the DRV8824 was burned out. Luckily, there were extra
chips and DT6 found a person who had the expertise to solder the new chip onto the board.
After this setback there were no other problems with the board.

Task 2 was designing a MSP430 control CARD that was compatible with the new board.

This board was designed and sent to a fabrication house a little later than expected because of

40

complications with designing gold finger on a DIMM. The board ended up being shipped out
three week later than hoped, but this setback was a not an issue because DT6 left enough time at
the end to allocate for a fabrication delay. When the board returned it was programmed and
connected to the DRV board, the two boards worked together seamlessly to control the stepper
motor.

Task 3 was programming the Stellaris control CARD to control the stepper motor. This
task was a success. DT6 was able to get all aspects of the Windows application to work with the
Stellaris control CARD, with the exception of the DAC control since the Stellaris does not have a
DAC on chip. DT 6 even went above and beyond by also getting the Stellaris to control the
stepper motor with a webpage through the Ethernet port.

The budget for this project was $500. DT6 went over budget because of the fabrication
requirements. This was due to the ECE shop only being able to produce 2 layered boards, while
DT6 needed 4 layer boards. A breakdown of DT6 budget can be seen in Figure 16 below. The

parts for this project were relatively cheap, since the whole board is basically surface mount each

Expenses

Parts (100) $60.12
PCB Fabrication (DRV) $341.02
PCB Fabrication (DIMM) $612.53

PCB Assembly S0

$1013.67

Figure 16. Budget

resistor and capacitor is around 7 cents. The price for parts was reduced by about $30 by

receiving three Tl parts as samples. The fabrication to get the DRV fabricatred was $573.44, this

41

was reduced after request for discounts to the price listed above. The control CARD was
$1010.45 this was the intial goute DT6 received, it took much negoiation to reduce the price to
what is seen in the table.

There are many future projects that could expand on what DT6 has done. A team could
use the DRV board that DT6 created to design and program a control CARD with a C2000
microcontroller. They could also do roughly the same project DT6 did, but with a different typ
of motor driver IC or a different type of motor while still using the Stellaris contorlCard. They
could use and brushed or brushless DC motor for example. Combining some of these tasks
together would create a good design project for a future group.

Overall the project came together more smoothly than anyone could have expect
considering no members of DT6 had PCB design skills prior to this project. There were some
minor setbacks, but DT6 accomplished all the tasks that were given to them and even went the

extra mile working on controlling the stepper motor through the Ethernet port. DT6 considers

e

this project a complete success, and was honored to work with Texas Instruments this semester.

42

Appendix 1

Leslie Thomas (LT)

LT completed many tasks this semester along with his main tasks he assigned himself
this semester, which were creating the pinout for the DRV8824 and MSP430 DIMM along with
create the Stellaris header file for the DRV8824. He started the semester off by understanding
how the DRV8824EVM works, which pins were necessary to be PWM and GPIO. He then
proceed understand how the LM3S9B96 control CARD was wired up and which pins were could
be shared between the new MSP430 controlCARD. He then compiled information with TJs
research and together designed the pinout for the DRV8824EVM and MSP430 control CARD
that Pat used to make a PCB. LT provided support for Pat with researching footprints and
checking all the connections he made before fabrication. LT found the fabricator to use,
compiled the Gerber files, created the bill of materials, and then placed all the orders for the parts
in the project.

For the software end, LT was the lead programmer behind creating the header files to be
used with Windows GUI along with Pat and TJs Ethernet solutions, with contributions from
there code added by TJ. LT created an interrupt for the Stellaris controlCARD that can count the
number of pulses of a PWM signal. He also created the functions to move the motor a certain
amount of steps, accelerate and decelerate the motor, invert the PWM signal, and also turn the

GPIO high or low based off a boolean input. LT studied the MSP430 code and used this

43

information to read the RS232 signal with the Stellaris controlCARD. He achieved a fully
working solution for the Windows GUI with no changing of the initial GUI provided by Tl and
compiled this solution with the DRV8824 header file. LT overcame all the bugs in his code and

has not been able to force the code to crash since his last revision.

44

Thomas Volinski (TJ)

TJ had two main tasks that needed to complete for our project to be successful. One was
hardware based and one was software based.

For the hardware, he looked up everything he could on the MSP430F1612. He figured
out which pins were necessary for controlling the motor. He figured out which pins needed to
come off of the control CARD and connect to the DRV8824. TJ analyzed a Stellaris and a C2000
controlCARD to determine where to place the ground and 5V pins on the control CARD as well
as where which GPI10 signals should be connected to which control CARD pins. LT and TJ
designed the final pin layout based on TJs research.

A smaller task TJ accomplished was going through all of the MSP430 code Design Team
6 had to determine how they set up their code and to figure out what all of the important registers
do. From there he looked into all documentation he could find about the Stellaris LM3S9B96 to
find the registers that were equivalent to the MSP430 registers so that when Design Team 6
began coding the conversion of code would be much simpler.

TJ’s main software task, was working with Pat on being able to control the Stellaris
controlCARD through its Ethernet port. Pat and TJ created a webpage that has the same
functionality as the windows application. TJ and Pat programmed the entire process of taking

information from the webpage, sending it to the program on the microcontroller, and creating the

45

required PWM signal as well as turning other signals on or off. Pat and TJ were successfully
able to turn all of the control signals on and off. They also were able to start, stop and update the
motors speed. TJ and Pat were able to make the motor pulse one step or any given number of
steps. Finally, they were able to compute the RPMs of the motor. TJ also worked on the

aesthetics of the webpage.

46

Patrick O’Hara

Through the entire project, Patrick worked on several aspects. The two main parts of the
project that Patrick worked on was the DRV8824EVM and the MSP430 control CARD. Patrick
modified the supplied design files for the EVM to remove the MSP430 microcontroller from the
board. After the MSP430 microcontroller was removed, a 100-pin DIMM socket was added and
the pin out created by TJ and LT was used to make the appropriate connected on the EVM. After
completion of the EVM printed circuit board, Patrick started work on the DIMM. A template to
create the control CARD was not supplied, so the design started from an AutoCAD drawing.
Patrick created the AutoCAD drawing using references to the standard dimensions for 100-pin
DIMM cards. He was then able to import this drawing into Altium Designer to create the board
cutout. He worked in accord with LT to place the appropriate parts on the board. After the parts
were placed, Patrick routed the circuit. Research was done by LT, TJ, and Patrick to determine

the correctness for the “gold fingers” and the dimensions on the Control CARD.

When both of the PCB designs were completed, Patrick started to work with TJ to
programming the Stellaris microcontroller. Patrick worked with TJ to create the web interface to
the microcontroller. The HTML interface sends commands from the web to the microcontroller
to control the motor. The interface was modeled from the original Windows application provided
by Texas Instruments. Patrick and TJ worked together to complete the web page, along with
coding the protocol for communication between the web page and the microcontroller. They also

47

worked together to code the appropriate response of the microcontroller. While working on all
parts of the PCB design and the software, Patrick provided appropriate work to both TJand LT

to check his work. If either teammate noticed an error, the error was eradicated.

48

Kole Reece

Technical tasks included the design of DIMM control card and research on MSP430 code
for porting to Stellaris platform. The design started with going over the control CARD provided
by the previous semesters design team and looking for templates to design the control CARD. No
DIMM standards or templates were found. A control CARD template was created with
AutoCAD and the control CARD design was undertaken by other team members. The MSP430
communicates with the Windows GUI using universal asynchronous receiver/ transmitter
(UART). In order to port the MSP430 code over to the selection on the GUI interface, it signals
to the MSP430 to complete some operation. Work on porting the code involved identifying the
operation code looking at the values that were sent to the MSP430, identifying the registers that
were updated and the values that were sent. A simple example of this would be to configure the
digital to analog converter. The expected OPCODE would be 5 DAC12_0CTL. Digital to analog
converter would be configured based on serial buffer inputs 1 and 2 from the computer and the
output voltage would be set using the DAC12_0DAT. All the registers that pertained to the

application were “mapped out “using the above method.

49

Appendix |1
References:

“MSP430F1612 Datasheet.” Texas Instruments.
http://focus.ti.com/lit/ds/symlink/msp430f1612.pdf

“DRV8824 Datasheet.” Texas Instruments.
http://focus.ti.com/lit/ds/symlink/msp430f2013.pdf

“DRV88xx Schematic” Texas Instruments.
CC - LM3S9B95 Schematic Rev. 0. Texas Instruments. PDF.

“Getting Started with PCB Design”, Altium.
http://www.altium.com/files/Altiumdesigner6/LearningGuides/TU0117%20Getting%20S

tarted%20with%20PCB%20Design.PDF

50

http://focus.ti.com/lit/ds/symlink/msp430f1612.pdf�
http://focus.ti.com/lit/ds/symlink/msp430f2013.pdf�
http://www.altium.com/files/Altiumdesigner6/LearningGuides/TU0117%20Getting%20S�
http://www.altium.com/files/Altiumdesigner6/LearningGuides/TU0117%20Getting%20S�

51

1 2 3 4 5 [
VDD yDD
¥
o1l owr vop o - -
VM DRV8802/12/13/14/24/25/41
L cz2V 0 uF 2 33K 33K
1 3
€3 oonF CP1 1 [opy aro |2 g
CF2 3l g oo EITmEMIBLL & R3 BILRHMBIL TEAULT
0 1uF || C4 ki Tl AT X BIMDIEI
1 LI g AIMDUAL 2 ATTMDT FAIT 330
T3 | e LT AMDO7AID
TEH, Tl et g FHENCIBNZ
A0OUT2 E] HOUT2 ENB/STERTN 2 ENB/STPBINL
BOUTZ L snaing 2 ENA/ENAINI D1
b SENB PHA/DIR/AING ELHIDIIAND W oFAULT
BOUTL DECAY -
EOUTL DECAY e
WhB nFAULT
AVREF 2 AVREF WSLEEP nSLEEP
BVREF 13] punce O smEseT |olb WRESET B
4 GND W Y3PI0UT 5 W3AP30UT |LC3 n_m
T4 5
= DRVS8xzx =
yM &
11 £ AVRER
R4 = & AOUTH
EOUTZ
33K 8 RS Pl BOUTT
D2 Cé +C7 3 a3 I¥e 1 AGVYREF BOUT2
£ N 100uF e 10K - &
VM| Y S = AVREF_SELECT
- 0.1uF
| —_— = AOUTL
GHD — LOUTZ
GND BOUTI
BOUTZ
— =
G =
o - 9
2 £ RSandRS = 0.4 Ohms DRYS12/24 m
= B RSand RS = 0.2 Ohrs DRVEE 1314725041
R6 P2
BGVREF b 2 =
10K BVREF 3 4 BE
o 52 E7 ——C10_LE8 56
Uelukget B £ EVREF_SEL .
GHD
O 1uF
ivie) = .
GHD Input Voltage VCC: 5V (Supplied by PC)
DECAY Input Voltage VM: 8V to 50V
\ﬁ o \7!
Re c12
= gy 1 GDECAY . .
] g:0.16 s Texas Instruments DRVS8802EVM Dual DC Motor Driver (1.5A) with BRAKE
SE DECAY SEL DRVS8§12EVM Dual DC Motor Driver (1.5A)
= ual otor Driver (2.
DRVS8§13EVM Dual DC Motor D 2.5A

DRV8814EVM Dual DC Motor Driver (2.5A) with BRAKE

DRV 8824EVM Bipolar Stepper Driver with Indexer (1.5A)
DRV8§25EVM Bipolar Stepper Driver with Indexer (2.5A)

DRVS8841EVM Quad Half H Bridge (2.54)

@
Z,
=]
Q
Z
=]

Size DWG o, R

B 7 CPGO04

1 of3

On this document, DRV88xx refers to the DRV8802/12/13/14/24/25/41 devices _

7?5

1 2 3 4 5 7 [

BINMD2ED

Q

52

d

1 2 3 4
1
CP1 CP2 VCP AOQOUTI AOUTZ ISENA AVREF BOUTI1 BOUT2 ISENB BVREF DECAY nFAULT nSLEEP
TP1 TP2 TP3 TP4 TPS Tr6 TP7 TP8 TP9 TP10 TP11 TP12 TP13 TP14
8 B B ia 8 8 B B i 8 B B 8
=] 5 ES <] =] =] = A Z M =
nRESET V3P3QOUT BIVnHM/BI1 BIO/MD2/BI0 AIVMDI/AI1 AIOMDO/AIO PHB/NC/BIN2 ENB/STF/BIN1ENAMEN/AINTPHA/DIR/AIN2
TP15 TP16 TP1T P18 P19 TP20 EE21 TP22 TP23 TP24
Q
B - [=-] [=-] ™ Y o] = =)
g g E S g g E Z Z :
’ u g E g g E z z 5 s
AIMDUATD = 8 g 5 s 3 z M g
mar - : - : - 2 :
S v 4
WEET_ VM VM GND GND GND GND GND GND
— Frmwomen TP25 TP26 TF27 TP28 TP29 TFP30 TP31 TF32
ENB/ISTPBIM
——
c 5 L D oD D @D oo oD Input Voltage VCC: 5V (Supplied by PC)
Input Voltage VM: 8V to 50V
Texas Inst s DRV8802EVM Dual DC Motor Driver (1.5A) with BRAKE
exas fnstruments | DRVE812EVM Dual DC Motor Driver (1.5A)
DRV3813EVM Dual DC Motor Driver (2.5A
- DRVS814EVM Dual DC Motor Driver (2.5A) with BRAKE
330 DRV8824EVM Bipolar Stepper Driver with Indexer (1.5A)
DRV8825EVM Bipolar Stepper Driver with Indexer (2.5A)
¥ S DRV8841EVM Quad Half H Bridge (2.5A)
o
4 B CPGO04 A
™ 30f3
d 1 2 3 _ 4

)

— 00000000Q0C0O0O00

U ee000000000000000 _
20000 P00000000QRO ©
200000000000 E0O00OD
0000000000000 C0OO0
0000000000000 CO0
0000000000000 C00

ood
eeuooem
2000

5. 00

DAL L

e e

00 "G

4afiequoyyog

NINT3X - t4ahepiy

Jafe doy

fet4aapg do)

awey Jafe]

HNAFXEBNYEA $008dD 404 T1R¥e0 dn ¥aeis J4ahe) I

53

Rl 71 Voo
i 2 i
svee ﬁ = - _ 1Pl " 2 \.m‘ X
5 = 78— 1 —3r 3 53—
L ‘L&%;%%MM VBUS o= oo i i 5 MMH
R USEDP Wﬂu g P 1 M,}M — PWER Selpet 4180 M WM T
3| sHLD e 114 ﬁ M A2 w2 5 ENES
Q2 T 0 ANAT T 11 -
w BGYREF
Bill of Materials Bill of Materials For Variant [CPG004-002 DRV8824] of Project [CPG004_RC.PriPcb] (No PCB Document Selected) ! e
7 GND
2
Source Data From: CPG004_RC.PijPch AMH
Project: CPG004 RC.PijPch MWHQEO&
Variant: CPG004-002 DRV8824 M%
[als_CPI041 SYCC
6 G040
Part Type Value Designator Description Manufacturer MFG Part Number Size Quantity 55
CAP .01uF c3 CAP 10000PF 50V CERAMIC X7R 0805 Kemet C0805C103K5RACTU 0805 1 wm
CAP 0.1uF C1,C2,C4,C6,C8,C9, C10,C11, €12, C13 CAP .10UF 50V CERAMIC X7R 0805 Kemet C0805C104K5RACTU 0805 12 22
CAP ATuF c5 CAP CER 47UF 25V X7R 0805 FO Kemet C0805F474K3RACTU 0805 1 A.mw Mw
CAP 100uF Cc7 CAP 100UF 50V ELECT M RADIAL Panasonic [ECA-THM101 0.315" Dia x 0.453" H (8.00m 1 M Mm
LED LED RED D1.D2.D3 LED RED CLEAR 1206 SMD Stanley Electric & Co HBR1105W-TR 1206 3 O
CONN Connector J1 TERM BLOCK 5.08MM VERT 2POS PCB On Shore Technologies OSTTA024163 0.200" (5.08mm) 1] = %
CONN N/A J3 TERM BLOCK 5.08MM VERT 4POS PCB On Shore Technologies OSTTAD44163 0.200" (5.08mm) 1 = m%
CONN N/A Ja CONN HEADER .100 SINGL STR 4P0S Sullins PBCO4SAAN 0.100" (2.54mm) 1| fe—ad
CONN J5 CONN SOCKET DIMM UNBUFFERED 3.3V Molex 71251-5101 1l M
CONN 14 Pos Header |J6 CONN HEADER .100 DUAL STR 14POS Sullins PBCO7DAAN HDR2X7 0.100" 1 M
CONN N/A JP1 CONN HEADER .100 DUAL STR 6POS Sul PBCO3DAAN 0.100" (2.54mm) 1 m
CONN N/A JP2, JP3 CONN HEADER .100 SINGL STR 3POS Sul PBCO3SAAN 0.100" (2.54mm) 21
CONN 3 Pos Header |JP4 CONN HEADER .100 SINGL STR 3POS Su PBCO3SAAN HDR1X3 0.100" 1
RES 33K R1,R2, R4, R10, R13, R14 RES 3.3K OHM 1/8W 5% 0805 SMD Yageo [RC0805JR-073K3L 0803 6
RES 10K R5.R6 R9 TRIMPOT CERM 10K OHM 12TRN TOP Murata PV37Y103C01B00 Square - 0.252" L x 0.157" 3|
RES 4 R7, R8 RES 40HM 2W 1% 2512 SMD Stackpole CSRN2512FKR400 2512 2
RES 330 R3, R15 RES 330 OHM 1/8W 5% 0805 SMD ‘Yageo RCO0805JR-07330RL 0805 3
RES 220 R11, R12 RES NET 8RES 220 OHM 16PIN SMD CTS Resistors 766163221GP 16-SOIC (3.9mm Width) 2|,
RES 0 R16, R17 RES 0.0 OHM 1/8W 5% 0805 SMD ‘Yageo |RC0805JR-070RL 0805 1 lied U% TOV
TL1 PCB T CPGO004 Bare Board Texas Instruments DRV88xx Customer EVM Bal 1
TEST POINT [WHITE TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP1|Test Points LG WHT TERM Kobiconn 151-101-RC 0.052in 24
TEST POINT [RED TP25, TP26, TP27 Test Points LG RED TERM Kobiconn 151-107-RC 0.052in 3
TEST POINT [BLACK TP28, TP29, TP30, TP31, TP32 Test Points LG BLACK TERM Kobiconn 151-103-RC 0.052in 5|
IC Driver u1 Stepper Motor Driver Texas Instruments DRV 8824PWP HTSSOP 1
ﬂm_
D GHND GND GND
Size DW(Mo Resr
B 7 CPGO04 A
| ™ 1ofl

DETAIL A

+58

)
SEE DETAILL A

3.5
—=1 30"
1.27 mm
+01] |f-—
NEANNEND | -.01 | n—
0.381 mm

(- . LN
Layer Stack Up Detail for: MSP430F1612 ControlCard e
Layer Name
Top Overlay
Top Layer
(Source Data From: CPG004_RC.PiPch
Project: CPGOM _RC.PjPch
Variant: CPG004-002 DRV8824
Creation Date:
Part Type Value Designator Descriptior
CAP 0.1uF C1,C2,C4,C6,C7,C8,C10 CAP .10U
CAP 10uF C3,C5,C9 CAP CER
LED LED RED D1,D2 LED RED
CONN UsSB J3 CONN RE
CONN DIMM J2 Pinout on
CONN 14 Pos Header |J1 CONN HE
CONN PWR JP1 CONN HE
INDUC 10mH L1 FERRITE
RES 3.3K R1 RES 3.3K
RES 330 R2, R4 RES 330 ¢
RES 196K R3 RES 196K
RES 110K RS RES 110K
SWITCH Push Bution 1 SWITCHL
IC MSP430MCU |1 1C MCU 1i
IC USB Driver u2 IC USB T¢
IC LDO u3 -
osc Crystal Y1 CRYSTAL
|Approved Notes
1. These assemblies are ESD sensitive, ESD precautions shall be observed.
2. These assemblies must be clean and free from fiux and all contaminants.
Biserfseoatiean Blixsismat airephplith workmanship standards IPC-A-610 C
] 4. Ref designators marked with an asterisk ("™") cannot be substituted.
ATl ofher componenls can be subsiiuted with equivalen S components.

Pin

56

MSP430F1612 controlCARD Pinout

MSP430 to

P6.0/A0 P6.1/A1

P6.2/A2

P6.3/A3

P6.4/A4

P6.6/A6 13 P6.7/A7

47 P5.3/UCLK1 23 73 | P4.7/TBCLK 43
46 P5.2/SOMI1 | 24 74 | P4.6/TB6 42
45 P5.1/SIMO1 | 25 75 | P4.5/TB5 41
P5.0/STE1 26 76 | P4.4/TB4 40
I_ 27 77 [
P4.3/TB3 28 78 | P4.2/TB2 38
48 P5.4/MCLK 29 79 | P4.1/TB1 37
34 P3.6/UTXD1 | 30 80 | P4.0/TBO 36
spare 31 81 | P3.7/URXD1 35
spare 32 82 _
12 P1.0 33 83 | P22 22
13 P11 34 84 | P23 23
14 P1.2 35 85 | P24 24
P1.3 36 86 | P25 25
I_ 37 o7 [N
P1.4 38 88 | P2.6 26
17 P1.5 39 89 | P27 27
18 P16 40 90 | P3.0/SELO 28
19 P17 41 91 | P3.1/SEL1 29
spare 42 92 _
20 P20 43 93 | P3.2 30
21 P21 44 94 | P33 31
spare 45 95 | spare
spare 46 96 _
NGO 47 97 | TOI 55
57 TCK 48 98 | TDO 54
56 TMS 49 99 | TRESTn 58

I 50 100

)8

g

| Genzogss T34F4F33 GA6 3333 &

T

L:ﬁFEHé

-nmp-no—ei‘

e

d
sesdgeis Bls b 0@ § 4

E 2828888

400 mA +3.39 LDD

Control Card LM3S9B95

Ethermet Conreced Contral Cand
Featuring the Stellads LMISSB55 MO

TEXAS INSTRUMENTS

STELLARIS® MICROCONTROLLERS

L8 WILD BASIN ROAD, SUITE 350
ALFSTIN T, TEF45
wrevn, U e an i | Bl

OC-LMISSROE-Reu sch

" CC-LMISEESS-0 _uﬂ 10F2

59

Orrit UG, U7, and R12 and populate 16 and 17 b0 aommmodste futum redsions.

DEQ R PEVIEON _ DATE = HZIvnl_lm._L_zmﬁl_lnl
DAY] 121772010 g EXAS =
PRCECT A STELLARIS® MICROCONTROLLERS
Controd Card LM353855 SO 108 WILD SASIN RICAD, SUITE 350
pPe i Py ALISTIN T, 78345
T /.l_ v Bl coimdsLellans

LMIESR0S Aev C3 Erata 2.4 work-ground.

TILENAME PRET WO

CC-LMISSRS5-Revl. sch Cr-LMISSEI5-0 _ =2 OF2

F28335 controlCARD [R1.0] DIMM100 pin-out

V33D-ISO 1 51 V33D-ISO
ISO-RX-RS232 2 52 ISO-TX-RS232
3 53
4 54
5 55
GND_ISO 6 56 GND_ISO
ADCIN-BO 7 57 ADCIN-AQ
GND [58 GND
ADCIN-B1 9 59 ADCIN-A1
GND 10 60 GND
ADCIN-B2 11 61 ADCIN-AD
GND 12 62 GND
ADCIN-B3 13 63 ADCIN-A3
GND 14 64 GND
ADCIN-B4 15 65 ADCIN-A4
16 66
ADCIN-B5 17 67 ADCIN-A5
GPIO-58 / MCLKR-A / XD21 (EMIF) 18 68 | GPIO-59 / MFSR-A / XD20 (EMIF)
ADCIN-B6 19 69 ADCIN-A6
GPIO-60 / MCLKR-B / XD19 (EMIF) 20 70 | GPIO-61 / MFSR-B / XD18 (EMIF)
ADCIN-B7 21 71 ADCIN-A7
GPIO-62 / SCIRX-C / XD17 (EMIF) 22 72 | GPIO-63 / SCITX-C / XD16 (EMIF)
GPIO-00 / EPWM-1A 23 73 | gPIO-01 / EPWM-1B / MFSR-B
GPIO-02 / EPWM-2A 24 74 | GPIO-03 / EPWM-2B / MCLKR-B
GPIO-04 / EPWM-3A 25 75 | GPIO-05 / EPWM-3B / MFSR-A / ECAP-1
GPIO-06 /| EPWM-4A / SYNCI / SYNCO 26 76 | GPIO-07 / EPWM-4B / MCLKR-A / ECAP-2
GND 27 77
GPIO-08 /| EPWM-5A / CANTX-B / ADCSOC-A | 28 78 | GPIO-00 / EPWM-5B / SCITX-B / ECAP-3
GPIO-10 / EPWM-6A / CANRX-B / ADCSOC-B | 29 79 | GPIO-11 / EPWM-6B / SCIRX-B / ECAP-4
GPIO-48 / ECAPS / XD31 (EMIF) 30 80 | GPIO-49 / ECAP6 / XD30 (EMIF)
GPIO-84 31 81 | GPIO-85
GPIO-86 32 82
GPIO-12 / TZ-1 / CANTX-B / MDX-B 33 83 | @PlO-13 / TZ-2 / CANRX-B / MDR-B
GPIO-15 / TZ-4 / SCIRX-B / MFSX-B 34 84 | GPIO-14 / TZ-3 / SCITX-B / MCLKX-B
GPIO-24 / ECAP-1 / EQEPA-2 / MDX-B a5 85 | GPIO-25 / ECAP-2 / EQEPB-2 / MDR-B
GPIO-26 /| ECAP-3 / EQEPL-2 / MCLKX-B 36 86 | GPIO-27 / ECAP-4 / EQEPS-2 / MFSX-B
GND 7 a7
GPIO-16 / SPISIMO-A / CANTX-B / TZ-5 38 88 | GPIO-17 / SPISOMI-A / CANRX-B / TZ-6
GPIO-18 / SPICLK-A / SCITX-B 39 89 | GPIO-190 / SPISTE-A / SCIRX-B
GPIO-20 / EQEPA-1 / MDX-A /| CANTX-B 40 90 | GPIO-21 / EQEPB-1 / MDR-A / CANRX-B
GPIO-22 / EQEPS-1 / MCLKX-A / SCITX-B 41 91 | GPIO-23 / EQEPI-1 / MFSX-A / SCIRX-B
GPIO-87 42 92
GPIO-28 / SCIRX-A / Resv / TZ5 43 93 | GPIO-29 / SCITX-A / Resv / TZ6
GPIO-30 / CANRX-A 44 94 | GPIO-31 / CANTX-A
GPIO-32 / I2CSDA / SYNCI / ADCSOCA 45 95 | cPIO-33 / I2CSCL / SYNCO / ADCSOCB
GPIO-34 /| ECAP1 / XREADY (EMIF) 46 96
GND 47 97 | TtDI
TCK 48 g8 | tDO
TMS 49 99 | TRSTn
EMU1 50 100 | EMUO

60

0 9 8 7 6 5 4 3 2 1

NOTES:
1. CARD SLOT ACCEPTS 127£040 MM MODULE THICKNESS.
{MEASURED OVER P.C. PADS).
P.C. BOARD THICKNESS 157 MM -0.18/-0.13
2. ALL FEGS ARE INTERFERENCE HITS TO PCB UNLESS NOTED ON
THE DWG.
| 3. REFER TQ THE PRODUCT SPEC. P5-B7630-004 FOR PERFORMANCE
7 SPECFICATIONS.

I Q.13
9779131

FUNCTION KEY VOLTAGE KEY
-3.99 ._I \

Loy

RECOMMENDED MODULE LAYOUT SHALL BE PER MO-161.
RECOMMENDED PLATING ON MCDULE PADS:0.76 M M MIN

HARD GOLD (Au) OVER 2.0 M M MIN NICKEL (Ni.

PRODUCT WILL HAVE DATE CODE STAMPED ON SIDE OF HOUSING.
& VOLTAGE VALUE MARKED ACCORDING TO TS RELATVE KEY

n

i

= _E_E 1 POSITION.
8. MATERIALS:
_— H /] _|| (1273 HOUSING - LCP, GLASS FILLED, UL 94V-0. COLOR: BLACK
PIN #1 TERMINAL - PHOSPHER BRONZE

LATCHES - HGH TEMP NYLON, GLASS FILLED, UL S4v-0, COLOR: BEIGE
(7280 9. PLATING:
CONTACT AREA , GOLD(AW) : THICKNESS = 15 M INCHA0.38H M)
SOLDERTALS : TIN (Sni (SEE PART NUMBER TABLE)
THICKNESS = 758 INCH/(1.91H M)
* 12150 MAX UNDERPLATE : 50 M NCH/.27¢ M MIN NICKEL (Nih.

(LATCHES DETENT OPEN)

} 10450 £0.25
(LATCHES DETENT CLOSED)

(=—(9.82}

2464025

A L

61

u L 0
i | Ul | |
UG QUHD COLOLOUTRRUIvny — [UDUTonnmonruonimonily) o [}
(1167} = T — a6
PIN =1 {SEE SHT 2
m m m QUALITY GENERAL TOLERANCES DMENSION STYLE SCALE _ DESIGN UNITS ._‘ Zm_lm
> SEZZ |symgoLs| (UNLESS SPECIFED! MM ONLY NTS MeTRIC |©Cp
-~ W W W mm INCH DRAWN BY DATE TTLE
o LalataiH W-0 ZPAGEsE & L CHUA 2000/04/12 DIMM, 1.27MM PITCH
25 L 3 PLACES|+—— |+-—— [ECREDEY DATE 100 CKTS, MULTI KEY
ui5 £1N/=0 2 PLACES[r015 [i--- BAUEK 2000/04/20
S\ E w 1 PLACE +-— +-—- [APPROVED BY DATE
28828" EILETE KTOH 20u0/0w20| ol MOLEX INCORPORATED
S w m M MATERIAL NO. [COCUMENT NO. SHEET NO.
Ao E=d DRAFT WHERE APPLICABLE| SEE TABLE | SD-87630-001 10F3
olpu=Al z_qv_u__#__,_m._m hmm&%%zm SEE | THIS DRAWNG CONTAINS INFORMATION THAT IS PROPRIETARY TO MOLEX
D] A 3/ INCORPORATED AND SHOULD NOT BE USED WITHOUT WRITTEN PERMISSION
AJ_P_AM_T
) 2004706/28 ? A 7 _ a 2 i 8 _ E _ Z _ 1

10 9 8 _ 7] 5 4 3 2 1

NOTES:
1. STRAIGHTNESS OF MODULE APPLIES TC THE AREA FROM
F THE BOTTOM OF THE CARD UP 4.00 MM.

CENTER OF DATUM A 3.00 MN, —— [=— 2. F TIE BARS ARE ATTACHED TO FADS, THE TIE BAR SHOULD
FUNCTICN BE ON THE INTERNAL LAYER, 30 THAT THE REMNANT

\I_u_.._rr wAl \ KEY \\(O_.._..P.mm KEY CANNOT CAUSE DAMAGE TO THE CONTACTS.

x\ 4 Lmﬂ%mmmﬂﬁ@@ I
— I
* Al

(M

E (DM “H)

h\ 400 MIN.

— [T :_.ﬁ_._.__._.__._u__u_.__._.__._.__.__._ MMM i L

PN =1 .\ = |
[B] PN #5HBACK) [635] TYP 2502020
i E 127 £0.00 —= fm
(2001 TYP (3229 —— 0.20£015
L 1002005 027@]
(6010 OLB~ SEE NOTE 1.

(OUTSIDE EDGE OF END PADS) RECOMMENDED MODULE LAYOUT

100 CKT 3.3¥ UNBUFFERED

62

C
B
FUNCTION KEY
FULL R. FULL R. {OFFSET RIGHT)
TYP. : TYP. - e DIMENSION STYLE SCALE DESIGN UNITS
Ss| |QUALITY| GENERAL TOLERANCES m_lm
> S22 |sympoLs| UNLESS SPECFIED) MM ONLY NTS _ MeTRIC |© 2R
] = 828 mm [NCH | CRAWN BY TATE TITLE
L.,SESz W-0 [ZPLAGS[— |+ L CHUA 2000404117 DIMM, 1.27MM _u_._.mI
oF £ IPLACES[E=== [1-== [ECED &Y DATE 100 CKTS, MULTI KEY
200010 L &\/=0 [Z PLACGES[t015 [+— QUEK 2000/04/20
S ol N} 1 PLACE |£--- +||l AFPROVED BY DATE
A [¢]0.10 DICB[A] W o mnuuu o = ANGULAR + KTOH 2000/04/20 @ MOLEX INCOCRPORATED
YOLTAGE KEY VOLTAGE KEY N m w m M MATERIAL NO. [COCUMENT NC. SHEET NO.
CENTER (33V) == & -
bl m R o DDnmmPrH DRAFT %czmmﬁwm?ﬂ_u_z_gm_.m M_Nmm_m_m TABLE | SD-87630-001 30F3
_ WITHIN, DIMENSIONS THIS DRAWNG CONTAINS INFORMATION THAT IS PROPRIETARY TO MOLEX
D g |/, 3 INCORPORATED AND SHOULD NOT BE USED WITHOUT WRITTEN PERMISSION
b_frame_A3_P_AM_T 9 _ 8 _ 7 _ 6 5 i 4 _ 3 _ 2 _ 1

Rev. O 2004/06/28

10 9 8 7 6 5 4 3 2 1

63

PART NUMBER PACKAGING TYPE FUNCTION KEY VOLTAGE KEY (DIM*H" DM “T*
87630-1001 CENTER 33V) (25.401
F TRAY
87630-0005 RIGHT (25v) (3050
OFFSET RIGHT 323
87630-1011 CENTER 33V {25.40)
TUBE
87630-1012 RIGHT (2.5V) (30.50)
E
D
B B e T ah i it
— {010 Wo¢¢ R RTINS Rl T 2 3
. * %l#l--liklw.pw.wlﬁl —t bttt bbbt
PN 1 7‘ [19.05] | EHE -~ |
c [z7] 635]
TVYP
[72.39]
] COMPONENT QUTLINE
g (LATCHES CLOSED)
RECOMMENDED P.CBOARD HOLE PATTERN
B (CONNECTOR SIDE)
mm m QUALITY GENERAL TOLERANCES DIMENSIDN STYLE SCALE DESGN UNITS THIRD ANGLE
> S22 |sypoLs| (UNLESS SPECIFED) MM ONLY NTS METRIC @d PROJECTION
| S === om INCH | DRAWN &Y DATE e
e thadalf- VW0 [fracsE = - LCHUA 2000/04/12 DIMM, 1.27MM PITCH
mw K 3 PLACES [£——- +--- CHECKED BY DATE ﬂoo ﬂ_A._um. Zc_ln_u_ Xma\
wd 5I\/-0 [ZPLACES[x0f5 [£— BOUEK 2000/04/20
Towo il 1PLACE |[£—- |£——- APPROVED 8Y DETE
A mﬂwwm ANGULAR £ 70 KTOH 2000704730 .o_m” MOLEX INCORPORATED
m w m & JATERIAL NO. QCUMENT NO. SHEET NO.
BoExT DRAFT gxmﬂﬂmpzv}z.ﬁ»@.m SEE TABLE |SD-87630-001 20F3
ouou =l _ WITEN o_zmz%_mzm | SZE] THIS DRAWING CONTAINS INFORMATION THAT IS PROPRETARY TO MOLEX
D g /A S| NCORFORATED AND SHOULD NOT BE USED WITHOUT WRITTEN PERMISSION

u|,n.n__.=m|>u|_u|>3|.ﬁ
Rev. D 200706/28 9 8 7 b e _ 4 _ 3 _ £ _ A

//
//
//
//

//
//
//
/7
//
//
//
//
//
//

EE R R e R e e R e R e R R e R e R e

DRV8824.c - Prototypes for Stellaris Motor Control.
Author: Leslie Thomas (LT)
co-authors: TJ Volinski & Pat O"Hara

Copyright (c) 2011

THIS SOFTWARE 1S PROVIDED "AS 1S™. NO WARRANTIES, WHETHER EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.

LMI SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

L R e R e S e R R e R

#include "inc/hw_ints._h"
#include "inc/hw_memmap.h"
#include "inc/hw_pwm_.h"
#include "inc/hw_sysctl.h"
#include "inc/hw_types.h"
#include “driverlib/debug.h"
#include "driverlib/interrupt.h”
#include "driverlib/pwm_h"
#include “driverlib/gpio.h"
#include "driverlib/rom_h"
#include "driverlib/sysctl_h"
#include "driverlib/DRV8824._h"

//
//
//

/ AA A AA A A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ALK AAAKX

LR R S R e R e R e R e e R e e

Initalize GPIO and PWM port/s

unsigned int uiCount;
unsigned int uiStepCount;
unsigned long ulScale;

VO

{

id PWM2Int(void)
PWMGenIntClear (STEP_PWM, STEP_GEN, PWM_INT_CNT_ZERO);
uiCount++;

if(uiCount >= uiStepCount)
{
PWMOutputState(STEP_PWM, STEP BIT , false);
PWMIntDisable(STEP_PWM,STEP_INT);
PWMGenIntTrigDisable(STEP_PWM, STEP_GEN, PWM_INT_CNT_ZERO);
uiCount = 0;
PWMGenConfigure(STEP_PWM, STEP_GEN,
PWM_GEN_MODE_UP_DOWN]| PWM_GEN_MODE_NO_SYNC);

64

Frequency(0);

}
}
void DRV8824 init(void)
{
//
// Enable the peripherals used by this example.
//

// PWM Enabled for STEP
SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM);
SysCtIPWMClockSet(SYSCTL_PWMDIV_16);

// GPIO for everything else

SysCtlPeripheralEnable(SYSCTL_PERIPH _GPIOA);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOH);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

// Step
GPIOPINnConfigure(GP10_PEO_PWM4);
GPIOPIinTypePWM(STEP_BASE, STEP_PIN);

// Direction
GPIOPinTypeGP100utput(DIR_BASE, DIR_PIN);
GPIOPinWrite(DIR_BASE, DIR_PIN, 0);

// nSLEEP
GPI0PIinTypeGPI100utput(SLEEP_BASE, SLEEP PIN);
GPIOPinWrite(SLEEP_BASE, SLEEP_PIN, 0);

// RESET
GPIOPINTypeGPI100utput(RESET_BASE, RESET_PIN);
GPIOPinWrite(RESET_BASE, RESET_PIN, 0);

// NnENABLE
GPIOPinTypeGP100utput(ENABLE_BASE, ENABLE_PIN);
GPIOPinWrite(ENABLE_BASE, ENABLE_PIN, 0);

// ModeO
GPI0PinTypeGP100utput(MODE_O BASE, MODE_O PIN);
GPIOPinWrite(MODE_O _BASE, MODE_O_PIN, 0);

// Model
GPIOPINTypeGPI100utput(MODE_1 BASE, MODE_1 PIN);
GPIOPinWrite(MODE_1 BASE, MODE_1 PIN, 0);

// Mode2
GPIOPINTypeGPI100utput(MODE_2_ BASE, MODE_2_PIN);
GPIOPinWrite(MODE_2 BASE, MODE_2 PIN, 0);

// NC
GPI0PinTypeGP100utput(NC_BASE, NC_PIN);
GPIOPinWrite(NC_BASE, NC_PIN, 0);

// Decay

GPI0PinTypeGP100utput(DECAY_BASE, DECAY_PIN);
GPIOPinWrite(DECAY_BASE, DECAY_PIN, 0);

//
// Configure PWM
//

PWMGenConfigure(STEP_PWM, STEP_GEN,
PWM_GEN_MODE_UP_DOWN | PWM_GEN_MODE_NO_SYNC);

//

// Enable the PWM generator.

//

PWMGenEnable (STEP_PWM, STEP_GEN);

//***

//

// This function sets the PWM frequency given to ulFreq at a 50% duty cycle
// This function changes the PWM clock divide to gain better resolution at
// higher speeds

//***

void Frequency(signed int ulFreq)
i F(ulFreg>40000)

SysCtIPWMClockSet(SYSCTL_PWMDIV_2);
ulScale = 2;

}
else if(ulFreq>20000)

SysCtIPWMClockSet(SYSCTL_PWMDIV_4);
ulScale = 4;

}
else if(ulFreq > 10000)

SysCtIPWMClockSet(SYSCTL_PWMDIV_8);
ulScale = 8;

}

else

SysCtIPWMClockSet(SYSCTL_PWMDIV_16);
ulScale = 16;

}

unsigned long ulPeriod = SysCtiClockGet() 7/ (ulFreq * ulScale) ;
PWMGenPeriodSet(STEP_PWM, STEP_GEN, ulPeriod);
PWMPulseWidthSet(STEP_PWM, STEP_OUT, ulPeriod / 2);

//***

//

66

// Accelarate the motor to new frequency starting at the past frequency
// With the Acceleration Rate and Acceleration Time Base provided
//

//***

void ACCEL(signed long pastFreq, signed long newFreq, unsigned long AccelRate,
unsigned long AccelTimeBase)

PWMOutputState(PWM_BASE, PWM_OUT_4 BIT , true);
while(newFreq > pastFreq)

SysCtiDelay(((SysCtlClockGet()/3) / (1000/AccelTimeBase)));
pastFreq = pastFreq + AccelRate;
Frequency(pastFreq);

}

Frequency(newFreq);

/ A A A A A A A A A A A A AA A A A A A AA A AAA A AL A AKX, X

//

// Decelarate the motor to new frequency starting at the past frequency
// With the Acceleration Rate and Acceleration Time Base provided

//

V4 faiaiaiaiaiaiaisiaiaiaiaiaisisitiaiaiaiaiaiasiaitiaiaiaiaiaiaiioiaiaiaiaialalatotole *

void DECEL(signed long pastFreq, signed long newFreq, unsigned long AccelRate,
unsigned long AccelTimeBase)

{

while(newFreq < pastFreq)
{

SysCtiDelay(((SysCtlClockGet()/3) / (1000/AccelTimeBase)));
pastFreq = pastFreq - AccelRate ;
Frequency(pastFreq);

}
if(newFreq < 62)

PWMOutputState(STEP_PWM, STEP BIT , false);
Frequency(0);

else

Frequency(newFreq);

V4 Ssieiaiaiaiaiaiaiaiaioiaiaiaisiaiaiaiaiaiaiaioiaiaiaiatole
//
// lInitiates number of steps and sets the frequency

// Deadband of 10ns is used to allow the interrupt to see the first pulse
//

67

void STEP_ON(unsigned int cnt,signed int Freq)

{
uiStepCount = cnt;
PWMGenConfigure(STEP_PWM, STEP_GEN,

PWM_GEN_MODE_DOWN | PWM_GEN_MODE_DB_NO_SYNC);
PWMDeadBandEnable(STEP_PWM, STEP_GEN,10,0);
PWMGenIntClear (STEP_PWM, STEP_GEN, PWM_INT_CNT_ZERO);
PWMGenIntTrigEnable(STEP_PWM, STEP_GEN, PWM_INT_CNT_ZERO);
Frequency(Freq);

IntEnable(INT_PWM2);
PWMINntEnable(STEP_PWM,STEP_INT);
PWMOutputState(STEP_PWM, STEP_BIT , true);
PWMGenEnable(STEP_PWM, STEP_GEN);

}

[[FFFFFT

//

// Inverts the STEP signal

//

//***

void STEP_HL(tBoolean output)

PWMOutputlinvert(STEP_PWM, STEP_BIT , output);
}

//***

//
// GP10 outputs
//

/ AAAEEAAA A AAAAAA A AAALAAAA AL XA AAX

void Direction(tBoolean output)

GPIOPinWrite(DIR_BASE, DIR_PIN, output ? DIR_PIN : 0);
}

void nSleep(tBoolean output)

GPIOPinWrite(SLEEP_BASE, SLEEP_PIN, output ? SLEEP _PIN : 0);
}

void nReset(tBoolean output)

GPIOPinWrite(RESET_BASE, RESET_PIN, output ? RESET PIN : 0);
3

void nEnable(tBoolean output)
{

GPIOPinWrite(ENABLE_BASE, ENABLE_PIN, output ? ENABLE_PIN : 0);
}

void nDecay(tBoolean output)

GPIOPinWrite(DECAY_BASE, DECAY_PIN, output ? DECAY PIN : 0);
3

void Mode_ O(tBoolean output)

GPIOPinWrite(MODE_O BASE, MODE_O _PIN, output ? MODE_O _PIN : 0);
}

void Mode_1(tBoolean output)

GPIOPinWrite(MODE_1_BASE, MODE_1_PIN, output ? MODE_1_PIN : 0);

}
void Mode_ 2(tBoolean output)
{
GPIOPinWrite(MODE_2_ BASE, MODE_2_ PIN, output ? MODE_2 PIN : 0);
}

void NC(tBoolean output)

GPIOPinWrite(NC_BASE, NC_PIN, output ? NC_PIN : 0);

// ke ke ek ke ek dede koo de ek
//

// Checks if GPIO input is on

//

//***

tBoolean is_Direction_on(void)

{
}

tBoolean is_nEnable_on(void)

return(GP10PinRead(DIR_BASE, DIR_PIN));

return(GP10PinRead(ENABLE_BASE, ENABLE_PIN));

}
tBoolean is_nSleep_on(void)
{
return(GP10PinRead(SLEEP_BASE, SLEEP_PIN));
}
tBoolean is_nReset_on(void)
{
return(GP10PinRead(RESET_BASE, RESET PIN));
}
tBoolean is_Mode O _on(void)
{

69

return(GP10PinRead(MODE_O BASE, MODE_O PIN));

}
tBoolean is_Mode 1 on(void)
{
return(GP10PinRead(MODE_1 BASE, MODE_1 PIN));
}
tBoolean is_Mode 2 on(void)
{
return(GP10PinRead(MODE_2 BASE, MODE_2 PIN));
}
tBoolean is_nDecay_on(void)
{
return(GPI0OPiInRead(DECAY_BASE, DECAY_PIN));
}
tBoolean is_STEP_HL on(void)
{
return(GPIOPInRead(STEP_BASE, STEP_PIN));
}

70

V4 faiaiaiaiaiaiaisiaiaiaiaiaiaisiaiaiaiaiaiaiaioiaiaiaiaiaiaiaiaiaiaiaiaiaialaiotole

//

// DRV8824_h - Prototypes for Stellaris Motor Control.

// Author: Leslie Thomas (LT)

// co-authors: TJ Volinski & Pat O"Hara

//

// Copyright (c) 2011

//

//

// THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF

// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// LM1 SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

//

#ifdef _ cplusplus
extern "'C"

{
#endif

[[FFFFAFF TSI KSRk kskekekskekekskekeokskedeokekeodeokekeodeokekeox
//

// Define Ports

//

//***

#define STEP_BASE GP10_PORTE_BASE // PEO on LM3S9B95 CC
#define STEP_PIN GP10_PIN_O

#define STEP_PWM PWM_BASE

#define STEP_GEN PWM_GEN_2

#define STEP_OUT PWM_OUT 4

#define STEP_BIT PWM_OUT 4 BIT

#define STEP_INT PWM_INT_GEN_2 // Interrupt for Step
#define DIR_BASE GPI10_PORTA_BASE
#define DIR_PIN GPIO_PIN_5
#define SLEEP_BASE GPI10_PORTA_BASE
#define SLEEP_PIN GPIO_PIN_3
#define RESET_BASE GP10_PORTH_BASE
#define RESET_PIN GPIO_PIN_1
#define ENABLE_BASE GPI10_PORTE_BASE
#define ENABLE_PIN GPIO_PIN_1
#define DECAY_BASE GPI10_PORTH_BASE
#define DECAY_PIN GPIO_PIN_6
#define MODE_O_BASE GPI10_PORTH_BASE

#define MODE_O_PIN GPIO_PIN_O

#define MODE_1_BASE GP10_PORTF_BASE

#define MODE_1 PIN GPI0O_PIN_O
#define MODE_2 BASE GP10_PORTA BASE
#define MODE_2 PIN GPI10_PIN_4
#define NC_BASE GP10_PORTF_BASE
#define NC_PIN GPIO PIN_1

V4 Asiaiaiaiaiaiaiaioiaiaiaiaiaiaiais

//

// Functions

//

//***

extern void DRV8824 init(void);

extern void Frequency(signed int ulFreq);

extern void ACCEL(signed long pastFreq, signed long newFreq, unsigned long
AccelRate, unsigned long AccelTimeBase);

extern void DECEL(signed long pastFreq, signed long newFreq, unsigned long
AccelRate, unsigned long AccelTimeBase);

extern void STEP_ON(unsigned int cnt, signed int Freq);

extern void STEP_HL(tBoolean output);

extern void Direction(tBoolean output);
extern void nSleep(tBoolean output);
extern void nReset(tBoolean output);
extern void nEnable(tBoolean output);
extern void nDecay(tBoolean output);
extern void Mode O(tBoolean output);
extern void Mode_ 1(tBoolean output);
extern void Mode 2(tBoolean output);
extern void NC(tBoolean output);

tBoolean 1
tBoolean 1

s_Direction_on(void);
s_nEnable_on(void);
tBoolean is_nSleep_on(void);
tBoolean is_nReset on(void);
tBoolean is_Mode 0O on(void);
tBoolean is_Mode_1 on(void);
tBoolean is_Mode 2 on(void);
tBoolean is
tBoolean is_STEP_HL_ on(void);

//
//
// Mark the end of the C bindings section for C++ compilers.

//

/7> *x
#ifdef _ cplusplus

b
#endif

72

V4 faiaiaiaiaiaisisiaiaiaiaisisitiaiaiaiaiaisiaiaiaiaiaiaiaiasiaiaialaiaiaiaiasiaitialaiaialalale Fkx
**

//

// main.c - Windows DRV8824 GUI protocol

// Author: LT Thomas

// Copyright (c) 2011

//

// THIS SOFTWARE IS PROVIDED "AS IS™. NO WARRANTIES, WHETHER EXPRESS,
IMPLIED

// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF

// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS
SOFTWARE.

// LM1 SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

// This is part of revision 4652 of the EK-LM3S9B92 Firmware Package.

//

**

#include "inc/hw_ints.h"

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include “driverlib/gpio.h"
#include "driverlib/pwm.h"
#include "driverlib/rom.h"
#include "driverlib/sysctl.h"
#include "driverlib/DRV8824._h"
#include “driverlib/interrupt.h
#include "utils/uvartstdio.h"

unsigned long AccelRate;
unsigned long AccelTimeBase;
signed long ulPeriod;

signed long ulFreq;

signed long pastFreq;

unsigned int cnt;
unsigned int stpCount;

/ AEEAAI A AAAAAAAAAA A AR AAAA A AR A AAA A AR A AARAAARAAAAA A AR A AAXAAAAAAAXAAAXAAAAXAAAAAAA XXX

**x

//

// The error routine that is called if the driver library encounters an
error.

//

V4 Seiaiaiaiaioisiaiaisiaiaiasiaiaiaisiaiaiaiiaiaisiaiaiaiaiaiaiaiasioiaiaiaiolaliaiaiatale *
**

#ifdefT DEBUG

void

__error__ (char *pcFilename, unsigned long ulLine)

{
#endi

//code

73

//
// This example connects the CC-LM3S9B95
//

int
main(void)

cnt = 0;

// unsigned long ulPeriod;
char SerialBuffer[5];

//

// Set the clocking to run directly from the crystal.

//

SysCtIClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
SYSCTL_XTAL_16MHZ);

//

// Initialize the UART.

//

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
GPIOPINTypeUART(GPIO_PORTA_BASE, GPIO_PIN_O | GPIO_PIN_1);
UARTStdiolnit(0);

DRV8824_init();

//

// Loop forever while the PWM signals are generated.

//

int DesiredStepperSpeed;

while(1)

{
// Reads the 5 bytes from the windows GUI
SerialBuffer[0] = UARTgetc();
SerialBuffer[1] = UARTgetc();
SerialBuffer[2] = UARTgetc();
SerialBuffer[3] = UARTgetc();
SerialBuffer[4] = UARTgetc();

// Switch statement for different commands
switch(SerialBuffer[0])
{

// Write GPIO (DIR DECAY nSleep, nReset)
case (0x03):
Direction(SerialBuffer[1] & 0x10);
nSleep(SerialBuffer[1] & 0x80);

74

nReset(SerialBuffer[1] & 0x40);
nDecay(SerialBuffer[1] & 0x02);

// nEnable & SteplLow
case (Ox0C):
switch(SerialBuffer[1])

{

case (0x02):
nEnable(false);
break;

case (0x03):
STEP_HL(false);
break;

}

break;

// nEnable & Step High
case (OxOE):
switch(SerialBuffer[1l])

{

case (0x02):
nEnable(true);
break;

case (0x03):
STEP_HL(true);
break;

}

break;

case (OXOF):// Pulse 1 Step
if(SerialBuffer[1] & 0x03)

{
stpCount = 1;
STEP_ON(stpCount, 250);
}
break;

case (Ox1A): // move steps
DesiredStepperSpeed = (SerialBuffer[1l] * 256) +
SerialBuffer[2]; //Configure the Frequency Rate
ulFreqg = (4000000/ DesiredStepperSpeed);
stpCount = SerialBuffer[3]*256 + SerialBuffer[4];
STEP_ON(stpCount, ulFreq);

break;

case (0x16): // Modes
Mode_O(SerialBuffer[1] & 0x08);
Mode_1(SerialBuffer[1] & 0x02);
Mode_2(SerialBuffer[1] & 0x01);

75

break;
case (0x17): //Start Stepper

DesiredStepperSpeed = (SerialBuffer[1l] * 256) +
SerialBuffer[2];

ulFreq = (4000000/ DesiredStepperSpeed);

AccelRate = SerialBuffer[3];

AccelTimeBase = SerialBuffer[4];

ACCEL(62, ulFreq, AccelRate, AccelTimeBase);

pastFreq = ulFreq;

break;

case (0x18): //stop stepper
DECEL(pastFreq, 0, AccelRate, AccelTimeBase);
pastFreq = O;
break;

case (0x19): //update stepper

DesiredStepperSpeed = (SerialBuffer[1l] * 256) +
SerialBuffer[2];
ulFreqg = (4000000/ DesiredStepperSpeed);
AccelRate = SerialBuffer[3];
AccelTimeBase = SerialBuffer[4];
iT(ulFreq > pastFreq)
ACCEL(pastFreq , ulFreq, AccelRate, AccelTimeBase);
else
DECEL(pastFreq , ulFreq, AccelRate, AccelTimeBase);

pastFreq
break;

ulFreq;

76

[February 2011

March 2011

[April 2011

[

[18]21]24]27]30] 2 [5 [8 [11]24]17]20

[23]26

1[4]7]10]13]16]19]22]25]28]31] 3 [e [9 [12]25]18]21]24]27]30

E=au
N —

el T

y

d LT,

=i
=3 PAl

el PAT
[10%]

h
i ==T—

] KOLE[20%]
] KOLE[30%]

KOLE

Task Name

Semester

Project Planning

PCB Fab for DIMM and EVM
DIMM Standards

Review F1612 Code
PWM Pins
USB to SPY wire

Remove Digital From PCB
Contact Tl

Make Webpage Look Better
PCB Tutorials & DIMM Fab

Add Pictures To Website

Research Coding & Wait for Parts
Test

Assemble Boards
Code Cortex
Code F1612

Design Day Prep

I

3 KOLEP.

Duration Start
75 days Tue 1/18/11
12 days Tue 1/25/11
14 days Thu 2/10/11
6 days Wed 2/9/11
5 days Thu 2/17/11
4 days Wed 2/9/11
4 days Sun 2/13/11
14 days Wed 2/9/11
5 days Mon 2/14/11
10 days Tue 2/15/11
10 days Tue 2/15/11
4 days Wed 2/9/11
& 37 days Tue 3/1/11
32 days Tue 3/1/11
40 days Thu 2/24/11
40 days Thu 2/24/11
8 days Thu 4/21/11

Finish

Sat 4/30/11
Wed 2/9/11
Tue 3/1/11
Wed 2/16/11

Wed 2/23/11
Sat 2/12/11
Wed 2/16/11

Mon 2/28/11
Fri 2/18/11

Mon 2/28/11
Mon 2/28/11
Mon 2/14/11
Wed 4/20/11
Wed 4/13/11
Wed 4/20/11
Wed 4/20/11

Sat 4/30/11

Predecessors

2

13

Resource
Names

LT

LT,T)
T)
T)

PAT
PAT[10%]

KOLE[20%]
KOLE[80%]

KOLE

KOLE,PAT
LT

T)

WBS
Predecessors

77

78

	LT completed many tasks this semester along with his main tasks he assigned himself this semester, which were creating the pinout for the DRV8824 and MSP430 DIMM along with create the Stellaris header file for the DRV8824. He started the semester off ...
	For the software end, LT was the lead programmer behind creating the header files to be used with Windows GUI along with Pat and TJs Ethernet solutions, with contributions from there code added by TJ. LT created an interrupt for the Stellaris controlC...
	TJ had two main tasks that needed to complete for our project to be successful. One was hardware based and one was software based.
	For the hardware, he looked up everything he could on the MSP430F1612. He figured out which pins were necessary for controlling the motor. He figured out which pins needed to come off of the controlCARD and connect to the DRV8824. TJ analyzed a Ste...
	A smaller task TJ accomplished was going through all of the MSP430 code Design Team 6 had to determine how they set up their code and to figure out what all of the important registers do. From there he looked into all documentation he could find abou...
	TJ’s main software task, was working with Pat on being able to control the Stellaris controlCARD through its Ethernet port. Pat and TJ created a webpage that has the same functionality as the windows application. TJ and Pat programmed the entire pr...

