
 1

Capacitive Rain Sensor for
Automatic Wiper Control

Final Report
ECE 480: Design Team 6

Eric Alexander Otte

Arslan Qaiser

Ishaan Sandhu

Anuar Tazabekov

Danny (Dongho) Kang

Project Sponsor: Hyundai-Kia America Technical Center, Inc. (HATCI)

Sponsor Representatives: Mr. Jeff Shtogrin & Mr. Daniel D. Vivian

MSU Facilitator: Dr. John R. Deller

 2

Executive Summary

While technological advances have worked to increase the safety and convenience of modern vehicles,

the fact remains that drivers today have more distractions than ever before. The prevalence of cell

phones, MP3 players, and in-dash navigation systems have lead to a multitude of potentially

dangerous diversions literally at the driver's fingertips. One feature designed to ease the burden on

vehicle operators is the automatic rain-sensing wiper system, which detects rain on the windshield

and turns on the automobile's wipers accordingly.

Hyundai-Kia America Technical Center (HATCI) tasked ECE 480 Design Team 6 with developing a new

rain-sensing system for wiper control based on capacitive sensor technology. Current systems utilize

an optical sensor for rain detection, which have a small sensing area and are prone to false detection

of rain causing inappropriate wiper operation. Design Team 6 has developed a solution to this problem

in the form of an integrated capacitive rain sensor system. Capacitive-sensing relies on interactions

with an emitted electric field to determine the presence of an object. Design Team 6's capacitive rain

sensor utilizes this principle to accurately detect varying levels of rain on the windshield, while

preventing false positives from objects such as dirt and human hands. The sensor unit mounts

discretely to the interior of the windshield while providing increased detection area, improved

accuracy, and a lower cost than the preexisting optical unit.

 3

Acknowledgments

Design Team 6 would like to sincerely thank all of those who assisted in the development of the

capacitive rain sensor. Special thanks to:

 Dr. Shantanu Chakrabartty: for always being willing and ready to help, and providing

extremely helpful guidance during the early development phase of the project.

 Mrs. Roxanne Peacock: for assisting in the ordering of countless small part orders, and for

always finding the better deal.

 Mr. Jeff Shtogrin: for his commitment to Design Team 6 as the HATCI representative, and for

his dedication in driving to East Lansing to hold weekly meetings at 8:00 am.

 Dr. John R. Deller: for his guidance and effort in grading the plethora of ECE 480 assignments

as the project's MSU facilitator.

 Mr. Brian Wright & Mr. Gregg Mulder: for their effort in fabricating prototype PCB designs and

assisting in the soldering of surface-mount components.

 4

Table of Contents
CHAPTER ONE .. 6

1.1. Introduction .. 6

1.2. Background ... 7

CHAPTER TWO ... 11

2.1. Design Specifications ... 11

2.2. FAST Diagram... 12

2.3 Conceptual Design Descriptions.. 12

2.3.1. Design a Capacitive-Sensing Circuit ... 12

2.3.2. Microcontroller Capacitive-Sensing Modules .. 13

2.3.3. Analog Devices Capacitance-to-Digital Converter.. 14

2.4. Feasibility Matrix ... 16

2.5. Proposed Design Solution .. 17

2.5.1. Capacitance Monitoring Circuitry: Analog Devices AD7745 ... 19

2.5.2. Microcontroller: Microchip PIC18F4520/PIC16F1826 .. 19

2.5.3. Capacitive Sensor Traces: Custom Design.. 20

2.5.4. Voltage Regulator: Analog Devices ADP3301-5.. 20

2.6 Estimated Production Cost Per Unit .. 21

2.7. Gantt Chart.. 22

CHAPTER THREE... 24

3.1. Sensor Trace Design... 24

3.1.1. COMSOL Multiphysics... 25

3.2. Analog Devices AD7745 CDC...37

3.3. PIC Programming and Interface ... 40

3.3.1. The I2C Interface ... 40

3.3.2. The Serial Interface on the PIC .. 41

3.3.3. The Serial Interface for the Visual Basic Application.. 43

3.3.4. The Visual Basic Application GUI... 44

3.4. ADP3301-5 Voltage Regulator.. 46

 5

3.5. PCB Layout Design ..47

CHAPTER FOUR .. 48

4.1. AD7746 Evaluation Board Testing... 48

4.2. PIC I2C Interface & Initialization Testing ... 49

4.3. Final Prototype Testing .. 52

CHAPTER FIVE .. 54

5.1. Conclusions ... 54

Appendix.. 55

Appendix A. Team Member Technical Roles.. 55

A.1. Danny Kang – Manager.. 55

A.2. Eric Otte – Document Preparation ... 55

A.3. Ishaan Sandhu – Presentation Preparation .. 56

A.4. Anuar Tazabekov – Webmaster...57

A.5. Arslan Qaiser – Lab Coordinator .. 58

Appendix B. Code .. 60

B.1. Microcontroller Code (Link.c)... 60

B.2. Visual Basic Application Code (Login.vb) .. 66

B.3. Visual Basic Application Code (Main.vb) .. 66

B.3. Visual Basic Application Code (CRs232.vb)..72

Appendix C. Schematic ... 95

Appendix D.PCB Layout .. 96

Appendix E. Test Data..108

E.1. Mist Data ... 96

E.2. Rain Data ..97

E.3. Downpour Data ..100

E.4. Leaf Data ..100

E.5. Finger/Hand Data ...101

Appendix F. COMSOL Reference ..108

COMSOL:...108

Implementation:..109

Appendix G. References...120

 6

CHAPTER ONE: INTRODUCTION & BACKGROUND

1.1. Introduction

Over the past two decades, the automotive industry has aggressively researched ways to exploit

modern computing and electronic advances in the development of safety, reliability, and

entertainment technologies for vehicles. Previously remarkable and uncommon features such as auto-

dimming mirrors and rear-view cameras have become standard in the modern era. Today consumers

expect their automobiles to be able to connect to their MP3 players, provide GPS-assisted visual

directions, and allow hands-free phone calls via Bluetooth technology. While these features have

improved the driving experience for many, they also imply the increasingly common interaction

between driver and electronic gadgetry during vehicle operation. These interactions can be a

dangerous distraction for the driver, who must take his/her eyes off the road to attend to a device.

With drivers exposed to an ever increasing number of distractions, automatic rain-sensing wiper

systems become an even more appealing feature, as they work to minimize the time the driver must

take his/her hands off the wheel. These systems detect droplets of rain on the windshield and

automatically turn on and adjust the wiper system in accordance to the level of precipitation. Current

rain-sensing systems use an optical sensor to detect the presence of water on the windshield, and

relay wiper control data to the vehicle's body control module (BCM). Unfortunately, these optical rain

sensors suffer from a small sensing area, are prone to false-positives, and are too expensive to be

included as standard equipment in most vehicles.

At the beginning of Michigan State University's spring semester in 2010, HATCI tasked ECE 480 Design

Team 6 with designing a new automatic rain-sensing system utilizing recent advances in capacitive

sensor technology. Design Team 6 has delivered on their proposal with a compact, highly accurate, and

cost effective capacitive rain sensor system. This sensor has been designed to be able to easily replace

optical units, as it mounts in the same location of the vehicle, on the interior of the windshield, and

relays the same control signals to the BCM of the automobile. Sigma-Delta capacitance-to-digital

converter circuits from Analog Devices convert minute changes in capacitance from the sensor traces

into a 24-bit digital output signal, which is then processed by an on-board microprocessor to

 7

determine appropriate wiper action. The sensor improves upon the preexisting optical unit in

detection area, reliability, package size, and most importantly, cost. Design Team 6 estimates that a

production-level run of capacitive rain sensors will cost under $12 per unit, significantly less than the

optical sensor at $18 per unit.

1.2. Background

Many attempts have been made at constructing an effective, reliable, and cheap rain detection and

wiper control system for vehicles. A perfect system could subtract one more task from the driver's

workload, and allow them to better keep their eyes on the road and hands on the wheel during foul

weather. Despite this, automatic rain-sensing wiper systems are relatively uncommon in modern

vehicles for a number of reasons. They are often too expensive, too unsightly, or too unreliable to be

desired in new automobiles. While a number of different design approaches have been made to

improve upon these issues, none have been successful enough for the technology to become widely

adapted in new vehicles.

By far the most common rain detection method, and the one currently employed by Hyundai vehicles,

is the use of an optical sensor. These optical sensors function by transmitting an infrared beam at an

angle through the windshield and measuring the reflection to determine the presence of water. This is

a relatively difficult task, requiring complex circuitry and precision manufacturing. Optical sensors are

thus somewhat expensive and can produce false readings when dirt or other particles on the

windshield cause a reflection mimicking that of rain. Because it relies on an infrared beam for

detection, the optical sensor also suffers from a very small sensing area on the windshield, limiting its

effectiveness in rapidly responding to light rain. In addition, the sensor housing is physically bulky,

reducing its appeal in luxury vehicles.

These issues can largely be mitigated by using a capacitive sensor rather than an optical one. Instead

of sending an infrared beam through the windshield glass, a capacitive sensor works by emitting an

electric field which can pass through the glass to interact with objects resting on it. Because water and

other objects such as dirt or rocks interfere with the electric field in very different ways, the sensor

will be less likely to be fooled if designed correctly. Unlike a standard capacitor, which confines the

electric field lines between two conductors in a tight package, a capacitive sensor allows the field lines

 8

to spread out, and is designed to maximize the fringing of the electric field lines away from the

conductors. These electric field lines are known as “fringe fields”, and are vital to the operation of a

capacitive sensor. Because they extend away from the conductors, which are typically just copper

traces laid out flat on a printed circuit board (PCB), the fringe fields can be interacted with by other

objects. When conductive or dielectric objects interfere with these fields, it changes the capacitance

of the capacitive sensor, as seen in Figures 1 and 2. This change in capacitance can then be detected

via circuitry and used to modulate an output signal. Capacitive sensors can detect the presence,

position, and type of conductive or dielectric material interfering with their fringe fields. When

multiple capacitive sensors are connected in an array, they can also be used to detect movement of a

conductive or dielectric object. This effect is most commonly seen in capacitive touch pads, such as on

popular products like the iPod Touch from Apple.

Figure 1: Finger interfering with fringe fields

Figure 2: Fringe field lines extending from sensor traces through windshield

 9

The electric field is created by applying an alternating current (AC) voltage to one of the conductors

forming the sensor traces. A typical button sensor requires only two conductors, which never

physically connect but are separated by a small distance and patterned into shapes. Depending on the

application of the sensor, the sensor traces can take on a variety of different sizes and patterns. The

layout of the traces is often designed to maximize the fringing fields over a given area. The traces,

along with the materials surrounding them, also form the base capacitance of the system, typically

along the order of 2 – 20 pico-Farads (pF) in magnitude. Base capacitance should be minimized when

possible, as the change in capacitance resulting from fringe field interference is often less than 0.5 pF,

and detection is easiest when the changing capacitance value is close to the base value.

The idea to use capacitive-sensing to detect rain on a windshield is not entirely new, as seen in United

States Patent US6094981, among others. However, technical limitations have largely prevented such

designs from being commercially viable. With advances in modern integrated circuits over the past

decade, however, this problem can now be avoided under the proper design. HATCI had previously

been contracted with Enterprise Electronics to design a capacitive sensor for this application, but

development was halted. PREH, located out of Germany, have been able to create an accurate

multifunction device which includes a capacitive rain sensor, but also includes other features such as

temperature and humidity sensors. These extra features were deemed not necessary for Hyundai

vehicles, and the overall cost of the system was far too expensive to be a practical alternative to

optical designs.

Design Team 6 has developed a stand-alone capacitive rain sensor system that is both reliable and

affordable. Unlike the design from PREH, this sensor is a compact unit solely dedicated to the task of

detecting rainwater on the windshield and controlling the wipers accordingly. This allows the design to

contain few parts, take up a small volume, and perform its job extremely well. It is significantly

cheaper than the current optical sensor, with an estimated $11.40 per unit cost, down from $18 for

the optical unit. It attaches to the interior of the windshield in the same location as the optical unit,

but takes up less volume in the prototype unit and could be further refined if necessary in the

production model for aesthetic purposes. Most importantly, the new sensor utilizes highly accurate

24-bit capacitance-to-digital converters and an on-board microcontroller to allow extreme accuracy

and prevention of false-positives, improving the reliability of the device. These improvements in cost

 10

and functionality will enable Hyundai to integrate the product into more vehicles in the future, further

improving vehicle safety in the modern era.

 11

CHAPTER TWO: EXPLORING THE SOLUTION SPACE

2.1. Design Specifications

In designing the capacitive rain sensor, the following design specifications were provided by the

sponsor:

 Functionality

o Detect and report the presence of one drop of water placed on top of a 6mm thick glass

windshield above the sensor trace area

 Accuracy

o Must not falsely trigger the wipers when a hand is placed in proximity of the sensor

trace area

o Provide at least two different output signal levels depending on the amount of rain

present on the windshield

o Be shielded from the vehicle interior to avoid interference; only water on the

windshield should activate the wipers, not objects or circuits inside the vehicle

o Maintain all performance characteristics across the temperature range from 33 – 120

degrees Fahrenheit

 Compatibility

o Device fits in existing Hyundai optical rain sensor housing area (1250 mm 2)

o Device mounts to interior of windshield via adhesive

o Device can operate on vehicle’s 12 V power supply

 Cost

o Estimated production cost less than $12 / unit

 12

2.2. FAST Diagram

Clean
Windshield

Manually Engage
Wipers

Automatically
Engage Wipers

Detect Rain

Use Wiper Switch

Interpret Voltage

Convert
Capacitance to

Voltage

Read Capacitive
Sensor

Reduce Cost

Task Basic
Function

Design Team 6 utilized the FAST Diagram shown above to help decompose the capacitive rain sensor

system into its primary tasks and components. The top branch describes the typical method of

cleaning the windshield using a manual switch. The lower branch describes using an automatic rain-

sensing system in which it is necessary to detect the rain. This is accomplished by monitoring the

capacitive sensor, converting the change in capacitance to a corresponding change in voltage, and

interpreting this changing voltage signal to determine wiper action.

2.3 Conceptual Design Descriptions

Unlike some of the more open-ended projects in ECE 480, HATCI provided Design Team 6 with a

specific solution to the problem of detecting rain on the windshield through the use of capacitive-

sensing. The most critical component in the design was a circuit to monitor the capacitance of the

sensor traces and modulate an output signal correspondingly. The conceptual design descriptions

thus represent a number of different variations on this critical component.

2.3.1. Design a Capacitive-Sensing Circuit

The first proposed design was to build a capacitive sensing circuit from basic components such as op-

amps, comparators, and passive components. Due to experience in analog circuitry, the team realized

that the capacitive sensor traces form a variable capacitor that changes as objects interfere with the

 13

fringe fields. Many circuits exist that utilize the time-constant principle of an RC circuit to produce an

output waveform. An astable RC-multivibrator circuit, as seen in Figure 3, produces a square wave

output with a frequency varying with respect to the capacitance of the sensor traces when they are

used as the capacitor. This varying square wave could then be interpreted by a microcontroller, and

compared to known responses from rain to determine appropriate wiper action.

Figure 3: Astable multivibrator capacitive-sensing circuit (C1 = Csensor)

It was determined that this circuit would not provide the high level of accuracy needed to determine

the presence of minute amounts of rain through a 6-8 mm thick glass windshield. Considering that the

base capacitance (steady state) of the sensor traces was going to be around 5 – 15 pF, and that the

changing capacitance from rain was expected to be between 0.1 – 0.5 pF, this would result in a change

in a very small change in output frequency. This would be difficult to differentiate by a microcontroller

and would also be highly prone to errors from noise. In addition, designing a capacitive-sensing circuit,

when highly accurate dedicated circuits were available on the market, was a risk that would not only

lower the accuracy of our product but take precious development time.

2.3.2. Microcontroller Capacitive-Sensing Modules

Many recently released microcontrollers include specific hardware modules for capacitive sensing. For

example, Cypress Semiconductor has a popular “CapSENSE” module, and Microchip has the

appropriately named “Capacitive Sensing Module”. These modules were investigated as potential

 14

solutions to the capacitance sensing circuit. This method would simplify the system, as the

microcontroller could perform two tasks – monitoring the capacitive sensor traces, and processing the

change in capacitance to determine wiper action. Since a microcontroller would still be needed for

processing if a separate circuit were used to monitor the sensor traces, it would be convenient to have

the microcontroller perform both tasks. Unfortunately, these hardware modules are primarily

designed for human touch applications, and it was determined that they would not possess the

extreme accuracy needed for the product, and offered by other, stand-alone circuits such as the

Analog Devices AD7745. Human touch applications are relatively easy work when compared to a rain

sensing application, as the covering of the sensor traces is often only 1 – 2 mm thick instead of the 6 –

8 mm of glass covering a standard windshield. Furthermore, the change in capacitance to a sensor

from a human finger is much larger than a change in capacitance from a few raindrops. Thus, while

the capacitive-sensing modules would be a very convenient solution to any human interface

application, they don't provide the accuracy needed for reliably detecting rain through a windshield.

2.3.3. Analog Devices Capacitance-to-Digital Converter

Stand-alone integrated circuits often off better performance than integrated modules. Analog Devices'

offers a series of highly regarded capacitance-to-digital converters (CDCs). These chips offer industry

leading accuracy in a variety of different configurations for applications requiring only one sensor to

ones requiring up to 14 sensors. A table of all Analog Devices CDCs is illustrated in Table 1. Since

measuring only one sensor on the windshield, which can be thought of as a “button sensor”, only one

channel of conversion was required. This narrowed our search down to either the AD7151/AD7153

low-power, 12-bit, one-channel CDCs or the AD7745/AD7747 24-bit, one-channel CDCs. Power

consumption was of little importance to the design, as it would be low regardless and the device

would be running off of the vehicle's power system. The AD7151/53 12-bit CDCs only cost

approximately $1.75 per, while the AD7745/47 cost closer to $4.50 per. However, the AD7745/47 offer

24-bits of accuracy on capacitance readings from the sensor, while the cheaper, low-power AD7151/53

offer only 12-bits. As performance was the most critical criteria, the decision was made to focus on the

AD7745/47 CDCs from Analog Devices.

 15

Table 1: Analog Devices capacitance-to-digital converter circuits

These circuits are designed for one channel of conversion, enabling one single-ended capacitive

“button sensor” or two differentially operated capacitive “button sensors” to be monitored. The term

“button sensor” simply indicates that the capacitive sensor is taking only one series of measurements

over the single capacitor formed by the sensor traces. It does not indicate that the sensor is to be used

as a human-interface button, although it potentially could be. It is useful to use the term “button

sensor” to differentiate a single point calculation as opposed to a “slider” or array of sensors, which

are integrated together to perform analysis of moving objects. Both the AD7745 and AD7747 operate

on either 3.7 V or 5 V DC, and have a built in excitation source generator, which is a 32 kHz square

wave with peak-to-peak amplitude equal to the operating voltage (Vdd). This excitation source is

connected to one conductor of the capacitive sensor traces, and the other conductor is tied to the

“Cin” pin.

The primary difference between the AD7745 and the AD7747 is that the AD7745 is designed for

floating capacitive sensor traces, while the AD7747 is designed for sensors in which one trace is

grounded. Because the AD7747's sensor capacitance is between the excitation conductor and a

grounded conductor, any extraneous capacitance between the excitation pin and ground will

accumulate as a parasitic capacitance, making the base capacitance of the sensor appear larger than it

should be. Since the capacitive sensor base capacitance is only between 5 – 15 pF, any additional

parasitics can easily dominate the base capacitance of the system, leading to errors. Alternatively, the

AD7745 is designed for floating capacitive sensors, in which the “Cin” conductor is not grounded but is

 16

instead floating. Only capacitance formed between the “Cin” trace and the excitation trace add to the

base capacitance of the sensor; any capacitance to ground does not increase the effective capacitance

of the sensor. Parasitics to ground can form very easily through shielded cables or on PCB layouts, so

this makes the AD7745 design more robust. The decision was made early on to focus on implementing

the design with the AD7745, with the AD7747 as an alternative if problems arose.

2.4. Feasibility Matrix

Design Factor Weight Self-Designed Circuit uC Capacitive

Sensing Modules

Analog Devices

CDC (AD7745)

Accuracy 5 2 2 5

Cost 4 3 5 2

Ease of

Manufacture

3 2 5 5

Development Time 2 1 4 4

Additional Features 2 1 3 4

Power

Consumption

1 2 5 4

TOTAL 34 64 68

Table 2: Feasibility Matrix

The Feasibility Matrix is a useful development tool allowing for quick comparison between a number

of different design schemes based on weighted design factors. Design Team 6 concluded that accuracy

was the most important design factor, as the capacitive rain sensor would be useless if it could not

accurately detect a change in capacitance caused by rain through a 6 – 8 mm glass windshield. Beyond

this, cost was evaluated as the second most critical factor, as one of the primary project goals was to

develop a sensor with an estimated production cost less than the current optical sensor. Through the

Feasibility Matrix, Design Team 6 compared the three proposed designs and determined that the use

of a stand-alone capacitance-to-digital converter from Analog Devices, the AD7745, would provide the

best solution for a capacitance monitoring circuit.

 17

2.5. Proposed Design Solution

Figure 4: Block diagram of the proposed capacitive rain sensor system

 18

Design Team 6 has developed an accurate and inexpensive capacitive rain-sensing system utilizing the

block diagram architecture shown in Figure 4. This device has four primary components: a capacitance

monitoring circuit, a microcontroller, a voltage regulator, and the sensor traces. These components are

mounted on a stack of two two-layer PCBs which are neatly housed in a plastic enclosure and

mounted to the interior of the windshield. The lower PCB contains the sensor traces, which adhere

directly to the windshield, on one side and a wire connector on the other side. The upper PCB mounts

approximately 1 cm above the lower and contains a protective ground shield on the bottom layer, and

the surface-mount components and connectors on the top layer. The device layout is illustrated in

Figure 5. The prototype to be displayed at Design Day contains the microcontroller in a separate

housing to allow it to interface with a laptop, which will display the wiper operation and sensor data

through a computer program. A fully functioning wiper system for display purposes was not realistic,

however, an actual Hyundai windshield will be on display with the sensor mounted to it. Production-

level prototypes will have the microcontroller on the windshield-mounted unit itself, and these circuits

will be on display at Design Day to give viewers a better image of how the final product will look.

 19

Figure 5: Cutaway view of plastic enclosure displaying two layer design

2.5.1. Capacitance Monitoring Circuitry: Analog Devices AD7745

As described in sections 2.3.3 and 2.4, the Analog Devices AD7745 was chosen as the capacitance

monitoring circuit. The AD7745 interfaces with both the capacitive sensor traces and the PIC

microcontroller processor. Its primary role is to sample the changing capacitance of the sensor traces

and output that data as a digital signal to the microcontroller for processing. The AD7745

communicates with the microcontroller via a two-wire I2C standardized communication system. This is

a Master/Slave system with a Master-generated clock line and bidirectional data line. The AD7745 is

powered by the 5 V DC output from the ADP3301 linear voltage regulator. It produces a 32 kHz, 5 V

square wave excitation signal to be routed to one of the sens\or traces, and the other sensor trace

connects to the “Cin” pin. The AD7745 comes standard in a 16-pin surface-mount (TSSOP-16) package.

2.5.2. Microcontroller: Microchip PIC18F4520/PIC16F1826

A microcontroller is necessary in the design to control the AD7745 and process the incoming

capacitance data. The PIC18F4520 was selected for use in the prototype display unit due to its free

availability in the MSU ECE 480 lab. For production-level prototypes, the very similar but smaller

PIC16F1826 will be used, as it contains only 18 pins as opposed to the 40 on the PIC18F4520. The

 20

PIC18F/16F is a popular and affordable 8-bit microcontroller which runs off a 5 V power supply and

comes in a DIP or surface-mount package. It can be programmed using the C programming language

to perform a wide variety of tasks, and has 3.5 kB of program memory. In the capacitive rain sensor,

the PIC serves as the Master in the I2C communication system with the AD7745. It is responsible for

configuring the AD7745 into the correct operating state, polling it for capacitive and other data, and

interpreting that data by comparing it to known capacitance values gained through extensive testing

of the device. If the incoming capacitive data falls into a certain range over a certain number of

samples, the PIC will output a signal instructing the wipers to engage. Furthermore, the PIC can

differentiate between varying levels of rain to adjust the speed of the wipers, and prevent false

positives by ignoring capacitance values outside the range of rain.

2.5.3. Capacitive Sensor Traces: Custom Design

The capacitive sensor trace layout is critical to the performance of the capacitive sensor system. The

shape and spacing of the two traces forming the capacitive sensor are directly related to the electric

field lines produced when the excitation voltage is applied. As the rain to be detected is present

through 6 – 8 mm of glass, the sensor traces should be designed as to maximize the fringing fields

away from the plane of the PCB. Glass has a relatively high dielectric constant of around 4.5, allowing

easy transmission of electric fields through it. Nonetheless, 6 – 8 mm is a very large distance away

from the sensor traces to have to measure, as most capacitive touchscreens have an overlay thickness

of only 1 – 2 mm. The software COMSOL was used to model a variety of different sensor layout

designs, where parameters such as trace patterns, conductor width, conductor spacing, and total

sensor size could be adjusted to find the perfect layout for the system. These parameters had a large

impact on the total system capacitance, which had to be less than 16 pF due to the range of the

AD7745 CAPDAC, and the shape and strength of the fringe fields. Using COMSOL, an exact sensor

trace pattern was decided upon, and empirical results mirrored that of the software's predictions.

2.5.4. Voltage Regulator: Analog Devices ADP3301-5

In a vehicle, the typical battery voltage can range from 11 – 13.5 V depending on the strength of the

battery and the operating state of the vehicle and the alternator. Both the AD7745 and PIC

microcontroller require 5 V DC for operation, so a reliable voltage regulator was required to scale the

vehicle power supply voltage to 5 V. The Analog Devices ADP3301-5 is a linear voltage regulator which

 21

can accept up to 14 V of input voltage, and outputs a preset 5 V DC. It can source up to 100 mA of

current, more than enough for the entire device. It offers high linearity, a wide operating temperature

range, and is available in a surface-mount package. The ADP3301-5 requires a capacitor on the output

pin of at least 0.47 uF in magnitude for proper operation.

2.6 Estimated Production Cost Per Unit

Component Cost

PIC16F1826 Microcontroller $0.90

AD7745 CDC $4.50

ADP3301-5 Voltage Regulator $1.40

Surface-mount Passive Components $0.10

Two-layer PCB Production and Assembly $4.00 (estimate)

Plastic Enclosure $0.50 (estimate)

TOTAL $11.40 (estimate)

Table 3: Estimated production cost per unit for capacitive rain sensor

Design Team 6 was tasked with developing a capacitive rain sensor system less expensive than the

current optical unit, which costs around $18 per unit. As Table 3 indicates, the estimated production

cost of the new capacitive sensor is only $11.40 per unit, a savings of approximately $6600 per 1000

vehicles.

 22

2.7. Gantt Chart

 23

 24

CHAPTER THREE: TECHNICAL DETAILS

3.1. Sensor Trace Design

The capacitive sensor traces are formed by two copper conductors, closely spaced, laid out flat on a

PCB. This PCB adheres directly to the interior of the windshield with the use of 3M 468MP adhesive

transfer tape. This tape is non-conductive and has been recommended for similar applications (see

Reference 6). Capacitive measurements are taken over the sensor trace area on the windshield,

therefore, only rain hitting this area will be detected. This still offers a larger detection area than the

current optical system, however. Since the purpose of the sensor is to detect between rain, no rain,

and other objects on the windshield, no data is required about the movement of the objects, just the

presence of them. This negates the need for a complex trace layout such as a slider or a touch-pad,

which are used to track movement, typically a human finger. Therefore, a single button sensor design

forming one capacitor to be measured was used, requiring only the two traces mentioned previously.

The layout of these traces can take on a variety of different shapes and sizes. Examples of sensor trace

layouts are illustrated in Figure 6.

Figure 6: From left to right – a button sensor, slider, and touch-pad trace layouts

For a button sensor with two conductors, the primary design variables to consider are the pattern of

the two conductors, the width of the conductors, the spacing between the conductors, and the overall

size of the sensor layout. All of these have a substantial impact on the total capacitance of the system,

as well as the distribution of fringe field lines. Typical patterns include concentric circles, parallel lines,

or interweaving “fingers”. The size of the sensor layout is chosen to match the system environment. If

the sensor is to detect a human finger touch, the overall size should be close to the size of a fingertip.

For the capacitive rain sensor, the size was chosen to be as large as possible without extending beyond

 25

the size constraints provided by HATCI. Due to the AD7745 CDC's ability to only null out the base

capacitance up to 16 pF, the size also had to be adjusted so the sensor did not exceed that value.

The spacing between the conductors is critical to the overall capacitance of the sensor, as well as the

distribution of fringe field lines. A continuous spacing of 0.25 - 1 mm between conductors is common,

as this typically provides a good combination of large fringing fields and small base capacitance. The

thickness of the windshield overlay presented a considerable design challenge, and because of this the

fringe fields took primary concern. If the fringe field lines did not extend all the way through the glass,

the change in capacitance from any object on the windshield would be much smaller than if the lines

did extend all the way. However, as the sensor traces move closer together in a design, the

capacitance will increase, so a balance must be struck. The ideal sensor trace layout for the capacitive

rain sensor is the one that produces the farthest extending fringe fields and covers the largest area,

while minimizing the sensor capacitance (maximum of 16 pF due to AD7745).

Assuming an effective sensor design, care must also be taken in the materials surrounding the trace

area. The dielectric constant of a material,  , is a measure of the material’s ability to transmit an

electric field. Higher values of  indicate a better transmission of electric fields. The dielectric

constant of air is 1, standard FR4 PCB material is around 4, and glass is approximately 4.5 – 6.

Windshield glass also contains a thin layer of plastic wedged between the two panes of glass, but

results indicated that this had little effect on the system. Because of air’s poor dielectric constant, no

air gaps can be present between the sensor trace area and the windshield, as any air gap would

weaken the field above it.

3.1.1. COMSOL Multiphysics

COMSOL Multiphysics is a power scientific tool that allows the use of visual environments to model

and implement engineering problems. The software uses Partial Differential Equations (PDEs) to solve

for complicated models. It is basically a computer program that allows the modeling and simulation of

a wide variety of physical phenomena. Technical problems relating to the field of: acoustics,

electromagnetics, heat transfer, fluid dynamics, structural mechanics and MEMs (Micro Electro

Mechanical Systems) can be modeled and studied using a rich and interactive user environment.

 26

Even though the software allows modeling of complex applications, it does not require an in-depth

knowledge of numerical or mathematical analysis. It is possible to build models by simply defining the

physical parameters like area, length, width, fluxes, and constraints rather than defining the equations.

Once the parameters are defined and the sub-domain and boundary conditions are set, COMSOL

automatically compiles a set of PDEs to represent the entire model. Due to the simple user interface

and easy modeling, COMSOL was chosen to model the capacitive sensor and observe the base

capacitance before actually fabricating the PCB design. There was also a time constraint and the team

did not have enough time to explore other alternatives.

Another reason the team opted to use COMSOL was because of the availability of the software. Prior

to using this software, the team had designed a capacitive sensor on Eagle PCB Design to verify if the

design works. The sensor worked surprisingly well for our first try but a more accurate design was

needed as required by our sponsor. That is why COMSOL was used to design the capacitive sensor

model and then compare various models to see which one is more accurate. A couple of designs were

laid out and the best one was chosen based on the COMSOL results. In the following, only four designs

will be discussed to give an overview of how COMSOL was used to optimize the design of the

capacitive sensor.

For more information on COMSOL, please refer to Appendix F.

Design 1:

The first capacitive sensor that was designed was on Eagle PCB Design. The sensor was approximately

designed and the area was kept under 1200 mm2 as specified by the sponsor. The purpose of this

initial design was to monitor the capacitance values and if whether it changes. The following pictures

show the sensor trace layouts and the actual fabricated design.

 27

Figure 7: Design 1 trace layout on Eagle PCB Design

Figure 8: Design 1 fabrication

Next, COMSOL was used to model this design. The 2D model is shown in Figure 9 below. It highlights

some of the important terms: trace gap, trace width and trace length that will be used to explain the

results.

 28

Figure 9: 2D trace on COMSOL

The above 2D trace is then extruded into 3D geometry. A 5mm layer of windshield is added on top of

the sensor traces. This is the Subdomain 2. A 1mm layer of silicon substrate is added to the bottom of

the traces. This is the Subdomain 1. The windshield is typically made out of glass of dielectric in range

4.6 to 14.5. The dielectric constant of each material was defined as follows.

Settings Subdomain 1 (Silicon) Subdomain 2 (Glass)

Єr 2.1 ~10.0

The following figure 10 shows the 3D geometry of the sensor traces along with the windshield and

substrate layers.

 29

Figure 10: 3D trace on COMSOL – Design 1

In order to determine the sensitivity of the sensor, it was important to plot the fringe field lines that

penetrate through the windshield. The intent was to see how many fringe field can penetrate and go

through the 5mm windshield. A 10mm layer of air was added to observe the fringe fields past the

windshield.

Figure 11: 3D trace on COMSOL with fringe field lines– Design 1

 30

Figure 12 below shows a side view of the sensor with the fringe fields. This picture gives a better idea

of the extent to which the fringe fields penetrate. The fringe fields under the windshield do not

contribute to any change in capacitance.

Figure 12: 3D trace on COMSOL with fringe field lines alternate view – Design 1

Results:

The results of Design 1 are summarized in the following table:

Trace characteristic Measurement

Trace width 1.778 mm

Trace gap 1 mm

Trace length 14.5 mm

Trace Area 800 mm2

Simulated Base Capacitance 11.4873 pF

Measured Base Capacitance 9.5620 pF

Table 4: Design 1 results

 31

The desired base capacitance should be around 16 pF because the capacitance to digital converter has

a maximum offset of 16 pF. This means that the converter is able to nullify the base capacitance as

long as it is less than 16 pF. This is effectively used to remove any capacitance changes due to noise

and electromagnetic radiation.

Problems:

There was some inconsistency in the measured and simulated value of capacitance. This is because at

the time of simulation, the values of dielectric constants were not confirmed. The correct values are

accounted for in the next three design cases. Design 2 looks at changes in trace length and trace width

to see the effect on the base capacitance.

Design 2:

Since COMSOL is able to give an estimated base capacitance, the second design was not fabricated.

This design has a larger area, longer trace length and longer trace width. The purpose of this design is

to show the effect on base capacitance with these parameter changes. The 3D geometry is shown

below:

Figure 13: 3D trace on COMSOL – Design 2

 32

Results:

The results of Design 2 are summarized in the following table:

Trace characteristic Measurement

Trace width 2.54 mm

Trace gap 1 mm

Trace length 16.3 mm

Trace Area 963.43 mm2

Simulated Base Capacitance 17.9301 pF

Table 5: Design 2 results

Comments:

The results of this design were as expected. The capacitance of the sensor is given by

d
AC 

 , where A is the sensing area, Є is the dielectric permittivity  mF /1085.8 12 and d is the

trace gap. Since the sensing area has increased compared to Design 1 so did the value of base

capacitance. This is outside the required range of 16 pF and so no further analysis was done for this

design. In the next design, the effect of decreasing trace gap is observed.

Design 3:

In this design, the effect of changing trace gap is observed on the base capacitance. Compared to

Design 2, the trace length and trace width are kept the same and only the trace gap is changed. The

reason for doing so is to study the changes in base capacitance due only to the trace gap.

 33

Figure 14: 3D trace on COMSOL – Design 3

Results:

The results of Design 3 are summarized in the following table:

Trace characteristic Measurement

Trace width 2.54 mm

Trace gap 0.7 mm

Trace length 16.3 mm

Trace Area 872.656 mm2

Simulated Base Capacitance 20.5280 pF

Table 6: Design 3 results

Comments:

The results of this design were as expected. The capacitance is given by

d
AC 

 . Since the trace gap, d has decreased compared to Design 2, the capacitance should

 34

increase. This is exactly what was observed. The capacitance increased from 17.9301 pF to 20.5280 pF.

This is outside the required range of 16 pF and so no further analysis was done for this design. In the

next design is similar to Design 2 except that the area is decreased from 963 mm2 to 913 mm2. In order

to do this, one of the traces was deleted.

Design 4:

This is the final design. Out of the above three designs, the closest one to 16 pF is Design 2 with a base

capacitance of 17.9301 pF. In Design 2, the number of traces of both comb drives was seven. However

in Design 4, one of the traces was deleted thus reducing the overall area. Expected result is a decrease

in the base capacitance. The following figure shows that the left comb (red) has seven traces while the

right trace (blue) has six traces.

Figure 15: 3D trace on COMSOL – Design 4

In order to further analyze this design, the fringe field lines were plotted to observe the penetration

effect through the windshield. The following figure shows the 3D trace design with fringe fields.

 35

Figure 16: 3D trace on COMSOL with fringe fields – Design 4

An alternate view is shown in Figure 17 below. This gives a better idea of how many fringe field lines

penetrate through the windshield.

Figure 17: 3D trace on COMSOL with fringe field alternate view – Design 4

 36

Results:

The results of Design 4 are summarized in the following table:

Trace characteristic Measurement

Trace width 2.54 mm

Trace gap 1 mm

Trace length 16.3 mm

Trace Area 913.036 mm2

Simulated Base Capacitance 16.581 pF

Table 7: Design 4 results

Comments:

The results of this design were as expected. The overall base capacitance decreased from 17.9301 pF

to 16.581 pF. This is close to 16 pF and so no further analysis was done for this design. The next design

is similar to Design 2 except that the area is decreased from 963 mm2 to 913 mm2. In order to do this,

one of the traces was deleted.

Comparison to Design 1:

A comparison of figure 12 and figure 17 clearly shows that Design 4 has more concentrated fringe field

lines. Not only that, but more fringe fields penetrate through the 5mm windshield and that increases

the sensitivity of the sensor. This is because any change in capacitance will be larger in Design 4

because of interference with a larger number of fringe field lines. The fringe field lines not only

penetrate the windshield but also go through the 10mm layer of air on top. Clearly, the penetration of

fringe fields in Design 4 is more than that of Design 1.

 Design 1 Design 4

Base capacitance 11.143 pF 16.581 pF

Change in capacitance with

touch (one trace)
~ 1pF 819.9 fF

 37

Change in capacitance with

touch (whole surface)
1000 fF 2.1651 pF

Change in capacitance with

water (min)
~ 11 fF 20 fF

Change in capacitance with

water (max)
~ 200 fF 497.3 fF

Table 8: Comparison of Design 1 and Design 4

3.2. Analog Devices AD7745 CDC

As described in section 2.5.1, the AD7745 is the mediate between the capacitive sensor traces and the

microcontroller. The core of the AD7745 is a 24-bit Sigma-Delta architecture ADC which is modified to

convert capacitance directly to a corresponding digital signal. A simplified diagram of this capacitance-

to-digital converter in the AD7745 can be seen in Figure 18, and a more detailed circuit schematic of

the Sigma-Delta CDC is displayed in Figures 19 and 20. At a high level, the Sigma-Delta CDC functions

by balancing charge through two capacitors – the variable sensor capacitor, Csensor, and an internal

reference capacitor. The capacitors are switched between a fixed input voltage to charge them, and

then discharge through an integrator. This can be thought of as a charge amplifier, as illustrated in

Figure 19, which produces a voltage proportional to the total charge. As Csensor increases, more

charge is pumped into the integrator from that branch because:

Q = C * V

With increasing Csensor, the output of the integrator will grow larger. This is fed to a comparator to

produce a series of zeros and ones, which vary with the charge needed to balance the feedback loop.

The feedback loop connects only to the reference capacitor, so as Csensor increases, the output

voltage increases, which is fed back to the reference side and increases the charging voltage of that

capacitor to balance the two branches. The feedback signal is also fed through a third-order digital

filter to produce the digital result which can then be output to a microcontroller for processing. The

Vref(+) and Vref(-) signals are reference voltage signals supplied by an internal temperature sensor to

 38

prevent drift from temperature variations.

Figure 18: AD7745 CDC architecture

Figure 19: Charge amplifier circuit of which the Sigma-Delta CDC is roughly based on

Figure 20: Detailed circuit schematic of a Sigma-Delta CDC

 39

The AD7745 can measure up to +/- 4.096 pF changing capacitance, and outputs the result as a 24-bit

digital signal. It can, however, accept up to approximately 16 pF of unchanging base capacitance from

the sensor traces. This base capacitance can then be nulled to approximately 0 pF using the on-board

CAPDAC. The CAPDAC can be thought of as a programmable negative capacitance value which can be

added to the “Cin” pin to null the base capacitance to around 0 pF. The AD7745 will then be able to

measure the full range of +/- 4.096 pF of changing capacitance from there. If one were not to use the

CAPDAC, and had a base sensor capacitance value of well over 4.096 pF, the data output would be a

constant reading of “4.096 pF” and the sensor would be useless.

The AD7745 interfaces with the PIC microcontroller using the I2C communication system, in which the

AD7745 is the Slave and the PIC the Master. I2C stands for “Inter-Integrated Circuit”, and is technically

a multi-master serial single-ended computer bus. The Master can control multiple Slave devices,

although only one is used in this design. The I2C system contains only two wires, a clock line known as

“SCL” and a data line known as “SDA”. The lines are open-drain type and require pull-up resistors. The

SCL line is generated by the Master and used to synchronize the two devices, while the SDA line

transmits data bit by bit bidirectionally but is controlled by the Master. Standard operating frequency

is 100 kHz.

The AD7745 contains 19 eight-bit registers, many of which must be set to configure the CDC into the

correct operating mode for the rain sensor system. As the PIC microcontroller is the Master, it is

responsible for writing the correct hex codes into the registers. The PIC is programmed to perform an

initialization sequence upon start-up (see 3.3 for more details).

The AD7745 is first reset to clear any data or settings. The excitation signal is then setup to be full

strength of Vdd. Next, the CAPDAC's are set to null out the base capacitance of the system close to 0.

The capacitive channel is setup to put it into single-ended mode at a sample update rate of 62 ms.

After this, the temperature channel is setup to take temperature measurements every 62 ms as well.

Finally, the AD7745 is placed into continuous conversion mode, where it will start producing 24-bit

capacitive data readings approximately every 62 ms. The data is stored in three registers, each of

 40

eight-bits, and must be read sequentially to ensure that no data corruption occurs. After the

initialization sequence is complete, the PIC polls the status register of the AD7745 to determine when

a capacitive data sample is available to be read. When the status register bit goes high, the PIC reads

from the three capacitive data registers sequentially and stores the data for processing. Temperature

data can be read in the same way. If the initial starting temperature is below 32 degrees Fahrenheit,

the system will shut off as the product is not intended to work in sub-freezing conditions, as per the

sponsor HATCI.

3.3. PIC Programming and Interface

3.3.1. The I2C Interface

In order for the PIC to utilize its I2C capabilities, the following header file must be included.

#include <i2c.h>

This header file allows the microcontroller to use all available I2C subroutines (shown below). In order

to use these subroutines, the communication lines must be initialized.

OpenI2C(MASTER, SLEW_OFF);

SSPADD = 0x3F;

The OpenI2C function sets the microcontroller to the master device (the AD7745 is configured as a

slave peripheral device) and the SLEW_OFF command lets the microcontroller know to disable all I2C

slewing. Once the communication lines are opened, the start routine must be used to begin

communication.

StartI2C();

 IdleI2C();

Once the communication is started, the master (the PIC) must choose a peripheral device address to

communication with.

WriteI2C(0xXX);

 IdleI2C();

 41

The ‘XX’ must be replaced by the unique device address of the AD7745. The next write will choose a

register from the peripheral device in order to send/receive data. If the microcontroller must receive

data, then the read routine is used.

unsigned char StatusReg = '0xFF';

StatusReg = ReadI2C();

 IdleI2C();

The unsigned character, StatusReg in this case, is needed to store the read data. If the consecutive

data is to be read, the microcontroller acknowledges the received data and prompts to receive again.

AckI2C();

 IdleI2C();

If, on the other hand, the microcontroller is done receiving data, then it will send a not acknowledge

signal alerting the peripheral device that consecutive reading is done.

NotAckI2C();

 IdleI2C();

Once all reading and writing is finished, the I2C communcation must be stopped.

StopI2C();

This is the only I2C routine that does not require the idle function to follow because it is the end of the

current I2C communication. The last routine used is restart, which clears the data on the

communication line, but allows for additional communication to follow.

RestartI2C();

 IdleI2C();

3.3.2. The Serial Interface on the PIC

Much like the I2C header file, the usart header file is required for serial communication between the

 42

microcontroller and the PC. One key difference is that both the PC and the microcontroller must be

coded to handle the serial communication. The following section describes the software on the

microcontroller end and the next section describes the software on the PC.

#include <usart.h>

The header file allows all necessary serial functions to be utilized by the microcontroller. In the main

function of the microcontroller, the serial communication line must be opened.

//Initialize the Serial communication interface

OpenUSART (USART_TX_INT_OFF & USART_RX_INT_ON &

 USART_ASYNCH_MODE & USART_EIGHT_BIT &

 USART_CONT_RX & USART_BRGH_LOW, 63);

RCONbits.IPEN = 1; // Enable interrupt priority

IPR1bits.RCIP = 1; // Make receive interrupt high priority

INTCONbits.GIEH = 1; // Enable all high priority interrupts

In the OpenUSART routine, the various predefined constants (reference the header file) initialize the

serial connection based on various different variables. In our particular application, we utilize

interrupts which must be enabled as illustrated above. Once opened, the connection can be used.

unsigned char cc;

cc = getcUSART();

while(BusyUSART());

The unsigned character is temporary and holds the value of an interrupt character on the USART line

(received via getc). The Busy function functions very similarly to the Idle function from the I2C

interface and halts all subsequent program operation until the communication is finished. This helps

prevent against control and data hazards. Once the appropriate amount of data has been read from

the serial line, the microcontroller can respond, or put data on the line.

putcUSART (CapHIGH);

while(BusyUSART());

 43

The putc function puts the character value in parenthesis (CapHIGH in this case) onto the serial line to

be read by the PC.

3.3.3. The Serial Interface for the Visual Basic Application

In order for the microcontroller to communicate with the Visual Basic application, a serial interface

must be used. Appendix X has the wiring diagram for the MAX232 serial communcation chip. In order

for the application to allow serial communication, a couple things need to be considered. First, the

CRs232.vb file must be included. Second, the port, baud rate, data bit size, stop bit, parity, and

timeout need to be configured. Below is a snippet of code from the Main.vb file, which is refrenced in

Appendix X. The code must be included in the form’s Load event:

With setRs232

.Port = 3

.BaudRate = 2400

.DataBit = 8

.StopBit = Rs232.DataStopBit.StopBit_1

.Parity = Rs232.DataParity.Parity_None

.Timeout = 10000

End With

setRs232.Open()

In our case, the USB-to-Serial connector is set to COM3, or port 3. The baud rate is determined by the

speed of the clock used by the microcontroller. The data bit size is determined by the amount of data

on the serial line at any one time. The stop bit is set to whatever character is desired to terminate

serial based communication.

After the initialization of the connection, the third step would be to trigger an interrupt by sending a

character over the serial line.

setRs232.Write("X")

The Write command sends a single character, ‘X’ in this case, over the serial line to interrupt the

microcontroller to perform a certain action. If the command is for the microcontroller to return data,

the Read command must be used where the integer in the parenthesis represents the number of bits

 44

to recieve

setRs232.Read(1)

3.3.4. The Visual Basic Application GUI

In order to visually interpret the capacitance data, we have created a Visual Basic application involving

two main forms. The first form is loaded when the program is loaded, and is represented by Figure 21

below. The username and password fields must be correct for the AD7745 to initialize.

Figure 21: Visual Basic Login GUI

Once the user presses the ‘Login’ button, the graphical user interface in Figure 22 will load. At first,

the graph will be blank, the Data textboxes will be blank and no LED pictures will be shown under the

Interpretation field. After inputting a sampling time and pressing ‘Start’, the user can see the current

capacitance, temperature, change in capacitance and interpretation of the capacitance value. The

animation of the windshield automatically increases/decreases in speed depending on what is sensed.

 45

Figure 22: Visual Basic Main GUI

The microcontroller setup, as pictured below, is housed in a small black control unit with an output for

serial connectivity as well as a simple on-off switch. All components from Figure 23 are soldered onto

a small two layered breadboard and placed inside the black box pictured in Figure 24.

Figure 23: Circuit Connectivity

 46

All of the components in the Protoboard above fit in the box below:

Figure 24: Boxed Control Unit

3.4. ADP3301-5 Voltage Regulator

The capacitive rain sensor is designed to operate on a vehicle's power supply, which can range from

11.5 – 13.5 V DC depending on the strength of the battery and the current state of the vehicle and

alternator. The PIC and AD7745 both operate on 5 V, so a voltage regulator was required to regulate

the changing vehicle voltage to a steady 5 V. It also had to meet the current requirements of the two

components. The AD7745 uses only 0.7 mA of current, while the PIC16F1826 uses approximately 5 –

10 mA depending on its operation state. The Analog Devices ADP3301-5 is a fixed 5 V DC output, up to

14 V DC input, linear voltage regulator capable of supplying up to 100 mA of current, more than

enough for the device. The ADP3301-5 produces no high frequency switching noise to possibly

interfere with the sensor. It comes in an 8-lead SOIC surface-mount package which is mounted close to

the other components on the top layer of the upper PCB. A bypass surface-mount capacitor of 0.47 uF

is present on the voltage input pin to increase voltage stability at the input. The ADP3301-5 requires a

capacitor of at least 0.47 uF on the output pin for proper operation, and an additional surface-mount

capacitor is mounted onto the PCB for this purpose.

 47

 3.5. PCB Layout Design

The layout and geometry of the PCBs were critical to the functionality of the sensor. Initially, a four-

layer PCB was considered, as this would reduce the complexity and cost of assembly of the device. In

this case, the bottom layer would contain the sensor traces, the second layer would be empty, the

third layer would contain a ground plane (ground shield), and the top layer would contain all surface-

mount components and connectors. This design was not pursued because of the worry that the four-

layer PCB would not be flexible enough to curve to fit the geometry of the windshield, concerns that

the ground shield would be too close to the sensor trace area, and the difficulty of layout out four

component traces on only one layer.

Instead of a four-layer PCB, a two-layer design was used with the PCB cut into half and mounted

vertically on top of each other with a spacing of 1 cm in between. The bottom PCB contains the sensor

traces adhered directly to the interior of the windshield, and a connector on the top layer. The top PCB

contains a ground shield on the bottom layer, and the surface-mount components and connectors on

the top layer. The top PCB mounts above the bottom PCB by fitting into the small plastic enclosure

which covers both devices.

ExpressPCB offered the most inexpensive prototype PCB production service. Using the “Miniboard”

option, fixed size 3.8” x 2.5” PCBs can be produced at $51 for three boards. ExpressPCB requires that

their software, PCBLayout, be used in designing the PCBs. This software offers industry standard

features and an intuitive user interface, so that layout out the board designs was very straightforward.

Parts can be selected using the built-in part finder tool, which places the pad geometry of the selected

part on the design. If the part to be used is not in the catalog, a custom pad geometry can be

constructed. The design includes a total of three integrated circuits, three terminal block connectors,

and four passive components, all of which are surface-mount. The sensor trace design also had to be

placed onto the PCB. Because the board was intended to be cut in half, the bottom PCB was placed on

one side of the design, and the upper PCB on the other. See Appendix D for figures relating to the PCB

layout.

 48

CHAPTER FOUR: TEST DATA

4.1. AD7746 Evaluation Board Testing

In the early design stages of the project, once the decision to utilize the AD7745 was made, an

evaluation board for the AD7746 was ordered to allow for rapid prototyping of sensor trace designs.

The AD7746 evaluation board contains the AD7746, which is the exact same as the AD7745 except for

it allows for two channels (two sensors) to be measured instead of one. The evaluation board contains

built in circuitry to allow the board to connect directly to a laptop, and includes a CD with software to

run a program allowing all data from the AD7746 to be displayed visually on the laptop. Capacitive

sensor traces can be connected to the input pins of the AD7746 and performance can be judged

through use of the software program. This allows for easy and rapid testing of different sensor trace

layouts to determine best performance.

Figure 25: Evaluation Board

Design Team 6 utilized the MSU ECE Shop's capabilities to construct simple two-layer PCBs for

performance comparison between sensor designs. Using the COMSOL software, sensor trace layouts

were created and analyzed. These were then transferred to a PCB layout using the software EAGLE.

They were then provided to the ECE shop, which produced small sensor trace PCBs for use in testing,

as seen in Figure 26. These test PCBs were then connected to the evaluation board, and adhered to a

small test piece of windshield glass. Objects could then be placed on the test piece of glass and the

performance results, such as the change in capacitance, were displayed on the laptop. Using this

process, the team was able to analyze real-world performance compared to predicted performance in

 49

COMSOL. The design predicted to work the best in COMSOL also performed the best in testing, and

this sensor trace design was chosen as the project moved forward and was used in the PCB layouts

from ExpressPCB.

Figure 26: Prototype sensor trace PCB produced by MSU ECE Shop

4.2. PIC I2C Interface & Initialization Testing

Once the sensor trace layout was decided upon, the next step was to begin testing with the AD7745

and the PIC microcontroller without the evaluation board present. This was done by using a standard

protoboard with the PIC and AD7745 mounted, and a serial and USB connector hooked up to the PIC

to allow for programming and data transfer to a computer. Because the AD7745 is a surface-mount

component, a TSSOP-to-DIP adapter was required to be able to be able to mount it in the protoboard.

An image of the protoboard used for testing purposes is shown in Figure 28. The AD7745 and PIC were

connected as would be in the final design, as seen in the schematic diagram in Appendix C, except for

the addition of the USB and Serial-port connectors to the protoboard, which interface with the PIC

microcontroller. The prototype sensor trace PCB was connected to the AD7745 using short cables, and

 50

adhered to the test piece of glass so that meaningful data could be produced.

Before the PIC could communicate with the AD7745, the I2C communication system had to be

integrated into the programming of the PIC. The software used to program the PIC was Microchip's

MPLab IDE. The PIC can be programmed using C code, which can be entered into the computer

running the MPLab IDE software, and then transferred to the PIC using the ICD2

debugger/programmer which connects to the PIC using a USB interface mounted on the protoboard.

The MPLab IDE software library includes a “.h” code file containing all of the standard I2C

communication commands, such as “Start”, “Stop”, “Ack”, “NotAck”, “Idle”, etc. Using these

commands, the initialization sequence described in section 3.2 was built in C code and programmed

into the PIC. The purpose of this initial testing sequence was to determine if the I2C communication

system was functioning correctly, and the data values were in fact being written to the AD7745's

registers.

Initially, the system did not work. This was determined by writing a hex value to a register, and then

reading the value of the register. If they did not match, then the communication failed. The problem

was determined to be with the “SSPADD” register value of the PIC, which determines the frequency of

the I2C communication line. The system is designed to operate at a standard frequency of 100 kHz.

This frequency is determined by the hex value written to the SSPADD register. This register counts

down from the programmed hex value twice for every cycle, and so is dependent on the clock

frequency of the PIC. The datasheet of the PIC had an incorrect formula for determining the value of

the SSPADD. Once this problem was corrected, the I2C communication system worked flawlessly.

 51

Figure 27: Group working on project

Testing of the AD7745 initialization sequence indicated that all register values were correctly set, and

the device was producing capacitive data. The PIC was receiving this data approximately every 62 ms

as predicted. Unfortunately, the data could only be seen through the MPLab IDE software's “Watch”

feature which could only display one value at a time and did not update. To display the streaming

capacitance data, the Visual Basic program had to be created. This program is detailed in section 3.3.

This program runs on a laptop or desktop computer and allows for a visual representation of the data

on the PIC. The computer connects to the protoboard using a Serial-port, which is connected to the

PIC. The Visual Basic program displays the current capacitance data, as well as a graph that plots the

capacitive data over a series of samples. In addition, the current temperature reading is displayed, and

an animation of a windshield is also shown on the screen. If the capacitive reading falls in the correct

range for light mist, rain, or heavy rain, the windshield animation responds accordingly. If a foreign

object such as a hand is placed over the sensor area, the windshield animation does not trigger.

 52

Figure 28: Prototype used for testing

The majority of testing was performed to determine the data ranges for varying stimuli on the

windshield. Because the PIC compares incoming capacitance data to these data ranges to determine

wiper action, the system can not function before these ranges are determined. These ranges were

found by taking a number of data points for each data range. Data ranges had to be determined for

each rain sensor setting: clean windshield, mist, rain, downpour, leaf, and hand. Appropriate levels of

mist, rain, etc were applied to the test windshield glass, data recorded, and the glass cleared before

repeating. Capacitance changes as small as only 10 fF were able to be measured accurately by the

AD7745 system, supporting the choice to utilize the high accuracy of the 24-bit CDC.

4.3. Final Prototype Testing

Once all the working code and Visual Basic program was complete, the PCB layout was ordered from

ExpressPCB. Three identical PCBs were received, although one had some of the component pads

soldered together and had to be scrapped. The other two were cut into their respective sizes using a

fine-tooth saw. The surface-mount components were then soldered onto the boards, and wires fit into

the terminal blocks connecting the upper PCB to the lower, and the upper PCB to the “black box”

containing the PIC18F4520 and laptop-interface equipment. The lower PCB was adhered to the

Hyundai test windshield using the 468-MP adhesive. A plastic enclosure from RadioShack was placed

around the lower PCB, and the upper PCB could then be placed in the plastic enclosure to rest about 1

cm above the lower.

 53

Figure 29: Upper PCB

Because of the new PCB layout and device structure, the capacitance change for each rain sensor

setting would change by a small amount. Due to this, new data points had to be taken to program into

the PIC for accurate operation. Between 50 – 100 data test points were taken for each rain sensor

setting for the final prototypes. A complete compilation of test data can be found in Appendix D.

Results indicated that the system was working precisely as designed. The sensor had no difficulty

determining rain on the windshield, and could very reliably differentiate between the different rain

sensor settings. The Visual Basic program worked flawlessly, displaying moving wipers in response to

different stimuli on the windshield.

 54

CHAPTER FIVE: CONCLUSION

5.1. Conclusion

Design Team 6 has developed an accurate and cost-effective capacitive rain sensor system, improving

on nearly all of the faults of the current optical sensor. Testing confirms that it can accurately detect

varying levels of rain through a 6 mm thick vehicle windshield, and uses this data to turn the wipers on

to three different settings depending on the amount of rain present on the windshield. Furthermore,

the sensor can differentiate between rain and other objects, such as leaves and human hands, that are

placed above the sensor, thus preventing false positives and inappropriate wiper operation. The entire

production-level unit is self contained in a compact plastic enclosure mounting near the rear view

mirror. This enclosure is smaller than the optical sensor unit, yet still provides a substantially larger

sensing area for better detection of sparse rain. The system contains only three integrated circuits and

four passive components, thus allowing for efficient assembly, low complexity, and easy repair. Slight

refinements will be needed to incorporate the capacitive rain sensor into an actual vehicle, as the

control signals to be sent to the vehicle’s BCM are not implemented at this time, as this was not a

sponsor requirement. However, these control signals can be easily generated by the on-board PIC

microcontroller and output to the BCM, and should require little additional design effort. The final

estimated production cost of the device is $11.40 per unit, which is a savings of approximately $6.50

per unit over the optical design.

 55

Appendix

Appendix A. Team Member Technical Roles

A.1. Danny Kang – Manager
Danny’s technical contributions to the project include assisting with the PCB

layout design, performing test data collection, and systems-level research.

Danny worked with Eric Otte in designing the PCB layouts which would be

ordered through ExpressPCB. Danny determined that the Flex-PCB, which the

team had initially planned on using for the sensor trace layout material, would

not be financially feasible. Danny researched the ExpressPCB software and

assisted in layout out the design with their PCB layout software. In order to connect the components,

each component’s layout had to be custom designed. Danny researched and designed these custom

component layouts.

Beside to design PCB layout, Danny Kang also supported many different technical portions. Early on in

the project, he was talking with Professor Tim Hogan about an initial sensor trace and get idea about

to use COMSOL software. He also researched about the components what team need.

Danny also focuses on the communication between sponsors, Jeff Shtogrin and HATCI. When the team

needed parts or technical advice from professional engineer, he found part from HATCI and brought

from there, and arranged the meeting with specialist.

A.2. Eric Otte – Document Preparation
 Eric's technical contribution to the project was in systems-level design,

capacitance-to-digital converter research, utilization of the AD7745 including

programming the initialization sequence, capacitive sensor trace design

research, final PCB design, layout, and device structure, as well as general

construction, troubleshooting and data sampling.

 56

During the initial weeks of the project, a general design solution was unclear. Eric took a lead role in

researching current information on capacitive sensors, and how they could be utilized in a rain sensing

application. Using this research data, Eric proposed the use of a capacitance-to-digital converter (CDC)

integrated circuit, along with the use of a microcontroller to process the capacitance readings.

Furthermore, Eric analyzed current CDCs on the market and determined that the Analog Devices

AD7745 24-bit CDC offered the best performance available, which would be necessary since trying to

detect rain through 6 – 8 mm of glass. He also researched standard sensor trace layout designs, which

were utilized by Arslan Qaiser when simulating designs in COMSOL.

After obtaining the AD7745 and PIC microcontrollers, Eric designed the initialization sequence for the

AD7745 in C programming code, which programmed various registers of the AD7745 to configure it

into the proper operating mode. He also designed the basic process of the PIC polling the status

register of the AD7745 to determine when data was ready and could be transferred.

Eric was responsible for the PCB layout design of the boards ordered through ExpressPCB. He first

created schematic diagrams illustrating pin connections for the components, and then used this to

layout the board using ExpressPCB PCB layout software. He determined that since the ExpressPCB

Miniboard service required 3.8 x 2.5” PCB's, the layout could be divided into two sections and cut in

half upon receiving the boards, and the PCBs stacked in an enclosure for the final prototype.

Additionally, Eric worked extensively in constructing and testing all prototype devices.

A.3. Ishaan Sandhu – Presentation Preparation
As designated in the proposal Ishaan Sandhu was responsible for

microcontroller integration. His main focus was to allow the microcontroller to

perform the detection of the capacitance change when an object interfered

with the fringing fields of the capacitive sensor and writing necessary code to

distinguish those changes from each other.

Ishaan wrote a microcontroller program using MPLAB IDE for our

microcontroller and the GUI program necessary to detect the change in capacitance and output the

 57

different levels of output for different objects being introduced to the sensor in Microsoft Visual

Studio. He also created the graph that outputs the change in capacitance throughout predefined time

intervals along with the animation for our output sequence. For example if you have the water pattern

‘mist’ the windshield wipers animation will move slow. Conversely, if you have ‘downpour’ the wipers

will move very fast in order to clear the rain from the windshield.

The biggest progress to the project was made when the team actually got their final design of the

sensor fabricated. Before assembling the final design Mr. Sandhu , Mr. Tazabekov and Mr. Qaiser did

some verification testing, and after the results matched the COMSOL predicted base capacitance they

started assembling the final design of the project. They build the circuit for driving the rain sensor and

created the adequate casing for it, in order to prevent it from being accidentally damaged. In the end

they mounted the sensor to the windshield and verified that sensor works before they start their final

testing.

During final testing, Mr. Qaiser, Mr. Tazabekov and Mr. Sandhu tested 3 different rain patterns: mist,

rain and downpour, and also figured out the range of change in capacitance for the ‘leaf’ case as well

as for ‘finger/hand’ case. They took 100 data points for each case in order to make sure that the range

is correct.

As Mr. Sandhu was responsible for the microcontroller integration for the final design, he had to

correct some of the values of the rain patterns. The final testing included five different cases,

compared to four at the first testing, so the final code had to be modified, based on the final testing

results.

A.4. Anuar Tazabekov – Webmaster
As designated in the proposal Mr. Anuar Tazabekov was responsible for

identifying and providing the required power supply to the whole system, and

also to teams’s microprocessor and capacitance-to-digital circuits, as well as

maintaining the suitable current and voltage supply to keep the system from

overheating. As the design process kept evolving and the first capacitance

sensor was build in the ECE Shop, Mr. Tazabekov and Mr. Qaiser were the people

 58

responsible for testing the design, and making sure that the concept is actually working. They took

hundreds of data points and developed a range of change in capacitance that will be matching a

certain rain case.

The biggest progress to the project was made when the team actually got our final design of the

sensor fabricated. Before assembling the final design Mr. Tazabekov, Mr. Qaiser and Mr. Sandhu did

some verification testing, and after the results matched the COMSOL predicted capacitance they

started assembling the final design of the project. They build the circuit for driving the rain sensor and

created the adequate casing for it, in order to prevent it from being accidentally damaged. In the end

they mounted the sensor to the windshield and verified that sensor works before they start their final

testing.

At the final testing, Mr. Tazabekov, Mr. Qaiser and Mr. Sandhu tested 3 different rain patterns: mist,

rain and downpour, and also figured out the range of change in capacitance for the “leaf” case as well

as for “finger/hand” case. They took 100 data points for each case in order to make sure that the

range is correct.

As Mr. Tazabekov was responsible for the power supply for microcontroller and capacitance-to-digital

controller he wanted to make sure that our circuit matched the real car scenario, where the whole car

system is being driven by the 12 volt car battery. He had to step down the supplied 12 volts to the 5

volts, since the microcontroller and capacitance-to-digital circuits required 5 volt power supply. In

order to perform that function, the voltage regulator circuit was built. After that checks for

overheating were made, and as a result it was obvious that the circuit will not overheat.

A.5. Arslan Qaiser – Lab Coordinator
Arslan Qaiser was mainly responsible for the design and testing of the capacitive

sensor interface. Along with fellow teammate Ishaan Sandhu, he was involved in

the building and testing of the initial prototype. Once the initial prototype was

complete, his task was to optimize the capacitive sensor and increase the

sensitivity. This was an integral part of the project because the sensor needed to

 59

be sensitive enough to detect and distinguish between various levels of water and other objects like

leaf and hand. In order to achieve this goal, Arslan used a 3D modeling software called COMSOL

Multiphysics which is capable of implementing a capacitive sensor in a visually friendly user interface.

Arslan helped design the initial prototype by using Eagle PCB Designer with the help of Ishaan Sandhu.

This was the first attempt at the design of the capacitive sensor and the purpose was to prove that the

capacitive sensor can sense change in capacitance. Using an LCR meter, it was proved that the

capacitive sensor works.

In order to optimize the capacitive sensor design, Arslan used the 3D modeling software, COMSOL. He

spent several weeks researching and understanding the software. There was not enough information

on the internet so Arslan had to use different examples provided with the software to get a general

idea of how to design a capacitive sensor. The software was intimidating at the beginning but once the

design was complete, it was well worth the time and effort. He was able to optimize the design and

proved that it was more sensitive compared to the initial design.

Once the final sensor design was fabricated, Arslan along with Ishaan Sandhu and Anuar Tazabekov

helped put the final prototype together. This involved adhere the sensor to the windshield, connect

the sensor to the microcontroller interface, and make an enclosure for the sensor and for the final

prototype.

In addition to these contributions, Arslan worked together with the team effectively and was heavily

involved in testing the final prototype. He spent several days testing the sensor and made sure that

there is no false reading that would trigger the sensor. Each test case; mist, rain, downpour, leaf and

hand required very accurate measurement. To do this, a hundred test points were taken for each case

and then averaged to give a fixed capacitance range for each test case.

 60

Appendix B. Code

B.1. Microcontroller Code (Link.c)
/**
 * Name: ECE 480 - Team 6
 *
 * What: Link.c
 *
 * When: 04/27/10
 *
 * Purpose: This file allows our Microcontroller to communicate *
 * with our VB App in order to display the capacitance *
 * from our AD7745 as well as the corresponding action *
 **/

#include <p18cxxx.h> //Include file for PIC18F4520
#include <usart.h> //Include file for serial
communication
#include <i2c.h> //Include file for I2C communication
#pragma config LVP=OFF
#pragma config WDT=OFF
void rx_handler (void); //Declare the ISR function (interrupts)
void initialize (void); //Declare the Initialize subroutine for
the C-D Converter
void get_data (void); //Declare the retrieve data subroutine
for the C-D Converter

long int loop;

unsigned char StatusReg = '0xFF'; // Creates a byte for use in analyzing the
status register of the AD7745
unsigned char CapDacValue = '0x00'; // Temporary byte for reading the CAPDAC value
to ensure proper operation

unsigned char CapHIGH = '0x00'; // Byte to receive MSB byte capacitive data
unsigned char CapMED = '0x00'; // Byte to receive the next (middle)
capacitive data
unsigned char CapLOW = '0x00'; // Byte to receive the last (LSB byte)
capacitive data

unsigned char VtHIGH = '0x00'; // Byte to receive MSB byte capacitive
data
unsigned char VtMED = '0x00'; // Byte to receive the next (middle)
capacitive data
unsigned char VtLOW = '0x00'; // Byte to receive the last (LSB byte)
capacitive data

/*--
 Name: main()
 Input: none
 Output: none
 Purpose: Give the program a starting point
 --*/
void main()
{
 TRISC = 0x00; //turn on tri-state register and
make all output pins
 PORTC = 0x00; //make all output pins LOW

 61

 OpenI2C(MASTER, SLEW_OFF); //Open the I2C connection and allow for
communication
 SSPADD = 0x3F; //Configuration register based on
10 MHz Clock

 //Initialize the Serial communication interface
 OpenUSART (USART_TX_INT_OFF & USART_RX_INT_ON &
 USART_ASYNCH_MODE & USART_EIGHT_BIT &
 USART_CONT_RX & USART_BRGH_LOW, 63);
 RCONbits.IPEN = 1; // Enable interrupt priority
 IPR1bits.RCIP = 1; // Make receive interrupt high
priority
 INTCONbits.GIEH = 1; // Enable all high priority interrupts
 ADCON1 =0x00; //set VREF+ to VDD and VREF- to GND
(VSS)
 TRISD = 0x04;
 PORTDbits.RD0 = 0; //GREEN
 PORTDbits.RD1 = 0; //YELLOW
 PORTDbits.RD3 = 0; //RED
 while(1);
}

/*--
 Name: rx_int()
 Input: void
 Output: none
 Purpose: Default interrupt code
 --*/
#pragma code rx_interrupt = 0x8
void rx_int (void)
{
 _asm goto rx_handler _endasm
}
#pragma code
#pragma interrupt rx_handler

/*--
 Name: rx_handler()
 Input: void
 Output: none
 Purpose: Handle all interupts from the VB App
 --*/
void rx_handler (void)
{
 unsigned char cc; //Temporary variable to handle interrupts
 cc = getcUSART(); //get a single character off the
USART line
 while(BusyUSART());
 PORTDbits.RD1 = 1;
 if(cc == 'i') //The VB App sends 'i' over the
Serial line to
 { //initialize the AD7745
 PORTDbits.RD0 = 1;
 initialize(); //Initialize the AD7745 (also works
as a reset)
 while(BusyUSART());
 putcUSART (CapHIGH); //put the Highest 2/6 charachters on the
USART line
 while(BusyUSART());

 62

 putcUSART (CapMED); //put the Middle 2/6 charachters on the
USART line
 while(BusyUSART());
 putcUSART (CapLOW); //put the Lowest 2/6 charachters onthe
USART line
 while(BusyUSART());
 }
 else if(cc = 'g')
 {
 get_data(); //Gets the capacitance and
temperature data from the AD7745
 while(BusyUSART());
 putcUSART (StatusReg); //put a single character on the USART
line
 while(BusyUSART());
 putcUSART (CapHIGH); //put a single character on the USART
line
 while(BusyUSART());
 putcUSART (CapMED); //put a single character on the USART
line
 while(BusyUSART());
 putcUSART (CapLOW); //put a single character on the USART
line
 while(BusyUSART());
 putcUSART (VtHIGH); //put a single character on the USART
line
 while(BusyUSART());
 putcUSART (VtMED); //put a single character on the
USART line
 while(BusyUSART());
 putcUSART (VtLOW); //put a single character on the
USART line
 while(BusyUSART());
 }
 PORTDbits.RD1 = 0;
}

/*--
 Name: initialize()
 Input: void
 Output: none
 Purpose: Initializes the AD7745 and get the base capacitance
 value to be sent to the Visual Basic program for
 interpretation
 --*/
void initialize (void)
{
 StartI2C(); // Start Sequence
 IdleI2C();
 WriteI2C(0x90); // AD7745 Address + WRITE
 IdleI2C();
 WriteI2C(0xBF); // RESET COMMAND TO AD7745
 IdleI2C();
 StopI2C(); // Stop Sequence

 // Delays 210 us after the AD7745 Reset
 for (loop=0x001; loop<0x834; loop++);

 StartI2C();

 63

 IdleI2C();
 WriteI2C(0x90);
 IdleI2C();
 WriteI2C(0x09); // Sets ADDRESS POINTER REGISTER of
AD7745 to EXC SETUP REG
 IdleI2C();
 WriteI2C(0x4B); // Sets EXC SETUP REG to use amplitude +-
Vdd/2, EXCON=1, and use EXCA
 IdleI2C();
 StopI2C();

 StartI2C();
 IdleI2C();
 WriteI2C(0x90);
 IdleI2C();
 WriteI2C(0x07); // Sets ADDRESS POINTER REGISTER of
AD7745 to CAP SETUP REG
 IdleI2C();
 WriteI2C(0x80); // Sets CAP SETUP REG to enable
capacitive channel 1 in single-ended mode. CHOP disabled
 IdleI2C();
 StopI2C();

 StartI2C();
 IdleI2C();
 WriteI2C(0x90);
 IdleI2C();
 WriteI2C(0x08); // Sets ADDRESS POINTER REGISTER of
AD7745 to VOLTAGE SETUP REG
 IdleI2C();
 WriteI2C(0x81); // Sets VOLTAGE SETUP REG to enable
capacitive channel 1 in single-ended mode. CHOP disabled
 IdleI2C();
 StopI2C();

 StartI2C();
 IdleI2C();
 WriteI2C(0x90);
 IdleI2C();
 WriteI2C(0x0B); // Sets ADDRESS POINTER REGISTER of
AD7745 to CAP DAC A REG
 IdleI2C();
 WriteI2C(0xDA); // Sets CAP DAC A REG to full value of
capacitance ~16 pF
 IdleI2C();
 StopI2C();

 StartI2C();
 IdleI2C();
 WriteI2C(0x90);
 IdleI2C();
 WriteI2C(0x0A); // Sets ADDRESS POINTER REGISTER of
AD7745 to CONFIGURATION REG
 IdleI2C();
 WriteI2C(0xA1); // Sets CONFIGURATION REG to enable
CONTINUOUS CONVERSION at 62 ms conversion time
 IdleI2C();
 StopI2C();

 64

 while(StatusReg!=0x00) get_data();
}

/*--
 Name: get_data()
 Input: void
 Output: none
 Purpose: Get the capacitance and temperature data from the
 AD7745 Chip to be sent to the Visual Basic Program
 --*/
void get_data (void)
{
 StartI2C(); //---------- THIS SEQUENCE POLLS
THE STATUS REGISTER
 IdleI2C();
 WriteI2C(0x90); // AD7745 Address + WRITE
 IdleI2C();
 WriteI2C(0x00); // Sets ADDRESS POINTER REGISTER of
AD7745 to STATUS REG
 IdleI2C();
 RestartI2C(); // Restart command to begin reading
 IdleI2C();
 WriteI2C(0x91); // AD7745 Address + READ
 IdleI2C();
 StatusReg = ReadI2C(); // Reads the STATUS REG value and stores
it in char "StatusReg"
 IdleI2C();
 NotAckI2C(); // Since reading only ONE BYTE, NO
ACKNOWLEDGE is sent back to prevent auto-increment of address pointer
 IdleI2C();
 StopI2C();
 for(loop = 1; loop < 4000; loop++);
 if (StatusReg>0x07 && StatusReg<0x10)
 {
 // If the EXCERR bit goes high in the Status Register, the EXC cannot
be driven
 // We want to then stop looping and perhaps turn on a red LED to
indicate an error
 PORTDbits.RD3 = 1; //RED
 }
 else if ((StatusReg == 0x00)||(StatusReg == 0x01)||(StatusReg == 0x02)) //
Capacitive data is ready to be read
 {
 if(StatusReg == 0x00)
 {
 StartI2C();
 IdleI2C();
 WriteI2C(0x90); // AD7745 Address + WRITE
 IdleI2C();
 WriteI2C(0x01); // Sets ADDRESS POINTER REGISTER of
AD7745 to CAP DATA REGISTER 1
 IdleI2C();
 RestartI2C();
 IdleI2C();
 WriteI2C(0x91); // AD7745 Address + READ
 IdleI2C();
 CapHIGH = ReadI2C();
 IdleI2C();
 AckI2C();

 65

 IdleI2C();
 CapMED = ReadI2C();
 IdleI2C();
 AckI2C();
 IdleI2C();
 CapLOW = ReadI2C();
 IdleI2C();
 AckI2C();
 IdleI2C();
 VtHIGH = ReadI2C();
 IdleI2C();
 AckI2C();
 IdleI2C();
 VtMED = ReadI2C();
 IdleI2C();
 AckI2C();
 IdleI2C();
 VtLOW = ReadI2C();
 IdleI2C();
 NotAckI2C();
 IdleI2C();
 StopI2C();
 }
 else if(StatusReg == 0x01)
 {
 StartI2C();
 IdleI2C();
 WriteI2C(0x90); // AD7745 Address + WRITE
 IdleI2C();
 WriteI2C(0x04); // Sets ADDRESS POINTER REGISTER of
AD7745 to CAP DATA REGISTER 1
 IdleI2C();
 RestartI2C();
 IdleI2C();
 WriteI2C(0x91); // AD7745 Address + READ
 IdleI2C();
 VtHIGH = ReadI2C();
 IdleI2C();
 AckI2C();
 IdleI2C();
 VtMED = ReadI2C();
 IdleI2C();
 AckI2C();
 IdleI2C();
 VtLOW = ReadI2C();
 IdleI2C();
 NotAckI2C();
 IdleI2C();
 StopI2C();
 }
 else if(StatusReg == 0x02)
 {
 StartI2C();
 IdleI2C();
 WriteI2C(0x90); // AD7745 Address + WRITE
 IdleI2C();
 WriteI2C(0x01); // Sets ADDRESS POINTER REGISTER of
AD7745 to CAP DATA REGISTER 1
 IdleI2C();

 66

 RestartI2C();
 IdleI2C();
 WriteI2C(0x91); // AD7745 Address + READ
 IdleI2C();
 CapHIGH = ReadI2C();
 IdleI2C();
 AckI2C();
 IdleI2C();
 CapMED = ReadI2C();
 IdleI2C();
 AckI2C();
 IdleI2C();
 CapLOW = ReadI2C();
 IdleI2C();
 NotAckI2C();
 IdleI2C();
 StopI2C();
 }
 }
}

B.2. Visual Basic Application Code (Login.vb)
Public Class Login
 Inherits System.Windows.Forms.Form

 Private Sub Login_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load

 End Sub

 Private Sub ButtonLogin_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ButtonLogin.Click
 If TextBoxUsername.Text = "ece480.team6" And TextBoxPassword.Text =
"rainsensor" Then
 Main.Show()
 Me.Hide()
 End If
 End Sub

 Private Sub ButtonCancel_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ButtonCancel.Click
 Me.Close()
 End Sub
End Class

B.3. Visual Basic Application Code (Main.vb)
Public Class Main
 Inherits System.Windows.Forms.Form
 Dim setRs232 As New Rs232
 Dim serial_in As String
 Dim x As Integer
 Dim a, b As Integer
 Dim HexVal As String
 Dim start As DateTime
 Dim time As TimeSpan
 Dim BaseCapacitance As Decimal

 67

 Declare Sub Sleep Lib "kernel32" Alias "Sleep" (ByVal dwMilliseconds As Long)

 Private Sub Main_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 With setRs232
 .Port = 3
 .BaudRate = 2400
 .DataBit = 8
 .StopBit = Rs232.DataStopBit.StopBit_1
 .Parity = Rs232.DataParity.Parity_None
 .Timeout = 10000
 End With
 setRs232.Open()
 ButtonReset_Click(sender, e)
 'Timer1.Enabled = True
 a = 0
 b = 0
 End Sub

 Private Sub ButtonStart_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ButtonStart.Click
 ChartCapGraph.Series("Series1").Points.Clear()
 ChartCapGraph.Legend.Enabled = False
 ChartCapGraph.ChartAreas("Default").AxisX.Title = "Time (s)"
 ChartCapGraph.ChartAreas("Default").AxisY.Title = "Capacitance (fF)"
 Dim Z As Integer
 Dim Max As Decimal
 Dim Min As Decimal
 Dim Capacitance As Decimal
 Dim Temperature As Decimal

 start = DateTime.Now
 For Z = 1 To (Val(TextBoxTimer.Text) * 11.111111)
 setRs232.Write("g")

 setRs232.Read(1)
 serial_in = setRs232.InputStreamString
 x = Asc(CChar(serial_in))
 If (x < 16) Then
 HexVal = "0" + Hex$(x)
 Else
 HexVal = Hex$(x)
 End If
 TextBoxStatus.Text = "0x" + HexVal

 setRs232.Read(1)
 serial_in = setRs232.InputStreamString
 x = Asc(CChar(serial_in))
 If (x < 16) Then
 HexVal = "0" + Hex$(x)
 Else
 HexVal = Hex$(x)
 End If

 setRs232.Read(1)
 serial_in = setRs232.InputStreamString
 x = Asc(CChar(serial_in))
 If (x < 16) Then
 HexVal = HexVal + "0" + Hex$(x)

 68

 Else
 HexVal = HexVal + Hex$(x)
 End If

 setRs232.Read(1)
 serial_in = setRs232.InputStreamString
 x = Asc(CChar(serial_in))
 If (x < 16) Then
 HexVal = HexVal + "0" + Hex$(x)
 Else
 HexVal = HexVal + Hex$(x)
 End If
 TextBoxHex.Text = "0x" + HexVal

 Capacitance = CDec("&H" + HexVal) * (0.0000004882812791) - 4.096

 setRs232.Read(1)
 serial_in = setRs232.InputStreamString
 x = Asc(CChar(serial_in))
 If (x < 16) Then
 HexVal = "0" + Hex$(x)
 Else
 HexVal = Hex$(x)
 End If

 setRs232.Read(1)
 serial_in = setRs232.InputStreamString
 x = Asc(CChar(serial_in))
 If (x < 16) Then
 HexVal = HexVal + "0" + Hex$(x)
 Else
 HexVal = HexVal + Hex$(x)
 End If

 setRs232.Read(1)
 serial_in = setRs232.InputStreamString
 x = Asc(CChar(serial_in))
 If (x < 16) Then
 HexVal = HexVal + "0" + Hex$(x)
 Else
 HexVal = HexVal + Hex$(x)
 End If
 TextBoxHex2.Text = "0x" + HexVal

 Temperature = CDec("&H" + HexVal) / 2048 - 4096
 Temperature = Math.Round(Temperature, 2)
 TextBoxTemperature.Text = Temperature.ToString + " (C)"

 Capacitance = Math.Round(Capacitance, 5)
 If (Z = 1) Then
 Max = Capacitance
 Min = Capacitance
 End If
 If (Capacitance > Max) Then
 Max = Capacitance
 End If
 If (Capacitance < Min) Then
 Min = Capacitance
 End If

 69

 TextBoxCapacitance.Text = (Capacitance * 1000).ToString + " (fF)"
 time = DateTime.Now.Subtract(start)
 ChartCapGraph.Series("Series1").Points.AddXY(time.TotalSeconds,
Capacitance * 1000)
 TextBoxCapacitance.Refresh()
 TextBoxHex.Refresh()
 TextBoxStatus.Refresh()
 TextBoxHex2.Refresh()
 TextBoxTemperature.Refresh()

 If ((Math.Abs(Capacitance - BaseCapacitance) * 1000) <= 4) Then
 TextBoxWhat.Text = "None"
 Timer1.Enabled = False
 PictureBoxWiper.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\1.jpg"
 PictureBoxWiper.Refresh()
 PictureBoxMist.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxRain.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxDownpour.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxLeaf.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxFinger.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxError.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 ElseIf ((Math.Abs(Capacitance - BaseCapacitance) * 1000) > 4) And
((Math.Abs(Capacitance - BaseCapacitance) * 1000) <= 15) Then
 TextBoxWhat.Text = "Mist"
 Timer1.Enabled = True
 Timer1.Interval = 60
 PictureBoxMist.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\a.jpg"
 PictureBoxRain.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxDownpour.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxLeaf.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxFinger.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxError.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 ElseIf ((Math.Abs(Capacitance - BaseCapacitance) * 1000) > 15) And
((Math.Abs(Capacitance - BaseCapacitance) * 1000) <= 200) Then
 TextBoxWhat.Text = "Rain"
 Timer1.Enabled = True
 Timer1.Interval = 30
 PictureBoxMist.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\a.jpg"
 PictureBoxRain.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\a.jpg"
 PictureBoxDownpour.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxLeaf.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxFinger.ImageLocation = "C:\Documents and

 70

Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxError.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 ElseIf ((Math.Abs(Capacitance - BaseCapacitance) * 1000) > 200) And
((Math.Abs(Capacitance - BaseCapacitance) * 1000) <= 600) Then
 TextBoxWhat.Text = "Downpour"
 Timer1.Enabled = True
 Timer1.Interval = 1
 PictureBoxMist.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\a.jpg"
 PictureBoxRain.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\a.jpg"
 PictureBoxDownpour.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\b.jpg"
 PictureBoxLeaf.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxFinger.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxError.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 ElseIf ((Math.Abs(Capacitance - BaseCapacitance) * 1000) > 600) And
((Math.Abs(Capacitance - BaseCapacitance) * 1000) <= 1200) Then
 TextBoxWhat.Text = "Leaf"

 Timer1.Enabled = True
 Timer1.Interval = 1
 PictureBoxMist.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\a.jpg"
 PictureBoxRain.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\a.jpg"
 PictureBoxDownpour.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\b.jpg"
 PictureBoxLeaf.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\b.jpg"
 PictureBoxFinger.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 PictureBoxError.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 ElseIf ((Math.Abs(Capacitance - BaseCapacitance) * 1000) > 1200) Then
 TextBoxWhat.Text = "Finger/Hand"
 Timer1.Enabled = False
 PictureBoxWiper.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\1.jpg"
 PictureBoxWiper.Refresh()
 PictureBoxMist.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\a.jpg"
 PictureBoxRain.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\a.jpg"
 PictureBoxDownpour.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\b.jpg"
 PictureBoxLeaf.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\b.jpg"
 PictureBoxFinger.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\c.jpg"
 PictureBoxError.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\d.jpg"
 Else
 TextBoxWhat.Text = "Error"
 PictureBoxMist.ImageLocation = "C:\Documents and

 71

Settings\admin\Desktop\Final\App\App\Pics\a.jpg"
 PictureBoxRain.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\a.jpg"
 PictureBoxDownpour.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\b.jpg"
 PictureBoxLeaf.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\b.jpg"
 PictureBoxFinger.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\c.jpg"
 PictureBoxError.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\c.jpg"
 End If

 TextBoxDelta.Text = Math.Round((Math.Abs(Capacitance - BaseCapacitance)
* 1000), 5).ToString() + " (fF)"
 TextBoxWiperSpeed.Text = Timer1.Interval
 TextBoxWiperSpeed.Refresh()
 TextBoxWhat.Refresh()
 TextBoxDelta.Refresh()
 PictureBoxMist.Refresh()
 PictureBoxRain.Refresh()
 PictureBoxDownpour.Refresh()
 PictureBoxLeaf.Refresh()
 PictureBoxFinger.Refresh()
 PictureBoxError.Refresh()
 Sleep(1)
 Next

 ChartCapGraph.ChartAreas("Default").AxisY.Minimum = Min * 1000
 ChartCapGraph.ChartAreas("Default").AxisY.Maximum = Max * 1000
 ChartCapGraph.ChartAreas("Default").AxisX.Minimum = 0
 ChartCapGraph.ChartAreas("Default").AxisX.Maximum = time.TotalSeconds

 End Sub

 Private Sub ButtonReset_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ButtonReset.Click

 setRs232.Write("i") 'Used to initialize the C-D Converter

 TextBoxCapacitance.Clear()
 TextBoxHex.Clear()
 TextBoxStatus.Clear()
 setRs232.Read(1)
 serial_in = setRs232.InputStreamString
 x = Asc(CChar(serial_in))
 If (x < 16) Then
 HexVal = "0" + Hex$(x)
 Else
 HexVal = Hex$(x)
 End If

 setRs232.Read(1)
 serial_in = setRs232.InputStreamString
 x = Asc(CChar(serial_in))
 If (x < 16) Then
 HexVal = HexVal + "0" + Hex$(x)
 Else

 72

 HexVal = HexVal + Hex$(x)
 End If

 setRs232.Read(1)
 serial_in = setRs232.InputStreamString
 x = Asc(CChar(serial_in))
 If (x < 16) Then
 HexVal = HexVal + "0" + Hex$(x)
 Else
 HexVal = HexVal + Hex$(x)
 End If

 BaseCapacitance = CDec("&H" + HexVal) * (0.0000004882812791) - 4.096
 Dim TempInt As Integer
 TempInt = Math.Round(BaseCapacitance * 1000, 5)
 TextBoxBaseCapacitance.Text = (TempInt).ToString + " (fF)"
 TextBoxBaseCapacitance.Refresh()
 End Sub

 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer1.Tick
 If b = 0 Then a = a + 1
 If b = 1 Then a = a - 1
 If a = 37 Then b = 1
 If a = 1 Then b = 0
 PictureBoxWiper.ImageLocation = "C:\Documents and
Settings\admin\Desktop\Final\App\App\Pics\" + a.ToString + ".jpg"
 PictureBoxWiper.Refresh()
 End Sub
End Class

B.3. Visual Basic Application Code (CRs232.vb)
Imports System.Runtime.InteropServices
Imports System.Text
Imports System.Threading
Imports System.ComponentModel
Imports System.IO

#Region "RS232"
Public Class Rs232 : Implements IDisposable
 '===
 '
 ' Module : Rs232
 ' Description : Class for handling RS232 comunication with VB.Net
 ' Created : 10/08/2001 - 8:45:25
 ' Author : Corrado Cavalli (corrado@mvps.org)
 'WebSite : www.codeworks.it/net/index.htm
 '
 ' Notes :
 '---

 '
 * Revisions *
 '

 73

 ' 02/12/2000 First internal alpha version built on framework beta1
 '
 ' 1st Public release Beta2 (10/08/2001)
 '
 ' Rev.1 (28.02.2002)
 ' 1. Added ResetDev, SetBreak and ClearBreak to the EscapeCommFunction
constants
 ' 2. Added the overloaded Open routine.
 ' 3. Added the modem status routines, properties and enum.
 ' 4. If a read times out, it now returns a EndOfStreamException (instead of
a simple Exception).
 ' 5.Compiled with VS.Net final

 ' Rev.2 (01.03.2002)
 ' Added Async support
 '
 ' Rev.3 (07.04.2002)
 ' Minor bugs fixed
 '
 ' Rev.3 (05/05/2002)
 ' Fixed BuildCommmDCB problem
 '
 ' Rev.4 (24/05/2002)
 ' Fixed problem with ASCII Encoding truncating 8th bit
 '
 ' Rev.5 (27/05/2002)
 ' Added IDisposable / Finalize implementation
 '
 ' Rev.6 (14/03/2003)
 ' Fixed problem on DCB fields Initialization
 '
 ' Rev.7 (26/03/2003)
 ' Added XON/XOFF support
 '
 ' Rev.8 (12/07/2003)
 ' Added support to COM port number greater than 4
 '
 ' Rev.9 (15/07/2003)
 ' Added CommEvent to detect incoming chars/events
 ' Updated both Tx/Rx method from Non-Ovelapped to Overlapped mode
 ' Removed unused Async methods and other stuff.
 '
 ' Rev.10 (21/07/2003)
 ' Fixed incorrect character handling when using EnableEvents()
 '
 ' Rev.11 (12/08/2003)
 ' Fixed some bugs signaled by users
 '
 ' Rev.12 (01/09/2003)
 ' Removed AutoReset of internal buffers and added PurgeBuffer() method
 '
 ' Rev.13 (02/09/2003)
 ' Removed GetLastErrorUse in favour of Win32Exception()
 '
 ' Rev.14 (14/09/2003)
 ' Added IsPortAvailable() function
 ' Revised some API declaration
 ' Fixed problem with Win98/Me OS
 '

 74

 ' Rev.15 (24/09/2003)
 ' Fixed bug introduced on Rev.14
 '
 ' Rev.16 (12/10/2003)
 ' Added SetBreak/ClearBreak() methods
 '
 ' Rev.17 (02/11/2003)
 ' Fixed field on COMMCONFIG
 '
 ' Rev.18 (03/03/2004)
 ' Fixed bug: Testing mhRS for <>0 is not correct
 '
 ' Rev.19 (08/04/2004)
 ' Fixed bug: Fixed bug on DTR property
 '
 ' Rev.20 (12/07/2004)
 ' CommEvent is no more raised on a secondary thread
 ' pEventsWatcher now uses a background thread
 '
 ' Rev.21 (24/10/2004)
 ' EscapeCommFunction declaration fixed
 ' Pariti enum fixed to Parity
 '
 ' Rev. 22 (05/03/2005)
 ' Fixed memory leak problem causing program closing
 ' without any message on some systems.
 ' Thanks to Ralf Gedrat for testing this scenario
 '
 ' Rev.23 (05/04/2005)
 ' Fixed bug DisableEvents not working bug
 '
 ' Rev.24 (20/04/2005)
 ' Fixed memory leak on Read method
 ' Added InBufferCount property
 ' IsPortAvailable method is now shared
 ' Thanks to Jean-Pierre ZANIER for the feedback

 '===
 '// Class Members
 Private mhRS As IntPtr = New IntPtr(0) '// Handle to Com Port

 Private miPort As Integer = 1 '// Default is COM1
 Private miTimeout As Int32 = 70 '// Timeout in ms
 Private miBaudRate As Int32 = 9600
 Private meParity As DataParity = 0
 Private meStopBit As DataStopBit = 0
 Private miDataBit As Int32 = 8
 Private miBufferSize As Int32 = 512 '// Buffers size default to 512 bytes
 Private mabtRxBuf As Byte() '// Receive buffer
 Private meMode As Mode '// Class working mode
 Private moThreadTx As Thread
 Private moThreadRx As Thread
 Private moEvents As Thread
 Private miTmpBytes2Read As Int32
 Private meMask As EventMasks
 Private mbDisposed As Boolean
 Private mbUseXonXoff As Boolean
 Private mbEnableEvents As Boolean
 Private miBufThreshold As Int32 = 1

 75

 Private muOvlE As OVERLAPPED
 Private muOvlW As OVERLAPPED
 Private muOvlR As OVERLAPPED
 Private mHE As GCHandle
 Private mHR As GCHandle
 Private mHW As GCHandle
 '--

#Region "Enums"
 '// Parity Data
 Public Enum DataParity
 Parity_None = 0
 Parity_Odd
 Parity_Even
 Parity_Mark
 End Enum
 '// StopBit Data
 Public Enum DataStopBit
 StopBit_1 = 1
 StopBit_2
 End Enum
 <Flags()> Public Enum PurgeBuffers
 RXAbort = &H2
 RXClear = &H8
 TxAbort = &H1
 TxClear = &H4
 End Enum
 Private Enum Lines
 SetRts = 3
 ClearRts = 4
 SetDtr = 5
 ClearDtr = 6
 ResetDev = 7 ' // Reset device if possible
 SetBreak = 8 ' // Set the device break line.
 ClearBreak = 9 ' // Clear the device break line.
 End Enum
 '// Modem Status
 <Flags()> Public Enum ModemStatusBits
 ClearToSendOn = &H10
 DataSetReadyOn = &H20
 RingIndicatorOn = &H40
 CarrierDetect = &H80
 End Enum
 '// Working mode
 Public Enum Mode
 NonOverlapped
 Overlapped
 End Enum
 '// Comm Masks
 <Flags()> Public Enum EventMasks
 RxChar = &H1
 RXFlag = &H2
 TxBufferEmpty = &H4
 ClearToSend = &H8
 DataSetReady = &H10
 CarrierDetect = &H20
 Break = &H40
 StatusError = &H80

 76

 Ring = &H100
 End Enum

#End Region
#Region "Structures"
 <StructLayout(LayoutKind.Sequential, Pack:=1)> Private Structure DCB
 Public DCBlength As Int32
 Public BaudRate As Int32
 Public Bits1 As Int32
 Public wReserved As Int16
 Public XonLim As Int16
 Public XoffLim As Int16
 Public ByteSize As Byte
 Public Parity As Byte
 Public StopBits As Byte
 Public XonChar As Char
 Public XoffChar As Char
 Public ErrorChar As Char
 Public EofChar As Char
 Public EvtChar As Char
 Public wReserved2 As Int16
 End Structure
 <StructLayout(LayoutKind.Sequential, Pack:=1)> Private Structure COMMTIMEOUTS
 Public ReadIntervalTimeout As Int32
 Public ReadTotalTimeoutMultiplier As Int32
 Public ReadTotalTimeoutConstant As Int32
 Public WriteTotalTimeoutMultiplier As Int32
 Public WriteTotalTimeoutConstant As Int32
 End Structure
 <StructLayout(LayoutKind.Sequential, Pack:=8)> Private Structure COMMCONFIG
 Public dwSize As Int32
 Public wVersion As Int16
 Public wReserved As Int16
 Public dcbx As DCB
 Public dwProviderSubType As Int32
 Public dwProviderOffset As Int32
 Public dwProviderSize As Int32
 Public wcProviderData As Int16
 End Structure
 <StructLayout(LayoutKind.Sequential, Pack:=1)> Public Structure OVERLAPPED
 Public Internal As Int32
 Public InternalHigh As Int32
 Public Offset As Int32
 Public OffsetHigh As Int32
 Public hEvent As IntPtr
 End Structure
 <StructLayout(LayoutKind.Sequential, Pack:=1)> Private Structure COMSTAT
 Dim fBitFields As Int32
 Dim cbInQue As Int32
 Dim cbOutQue As Int32
 End Structure

#End Region
#Region "Constants"
 Private Const PURGE_RXABORT As Integer = &H2
 Private Const PURGE_RXCLEAR As Integer = &H8
 Private Const PURGE_TXABORT As Integer = &H1
 Private Const PURGE_TXCLEAR As Integer = &H4
 Private Const GENERIC_READ As Integer = &H80000000

 77

 Private Const GENERIC_WRITE As Integer = &H40000000
 Private Const OPEN_EXISTING As Integer = 3
 Private Const INVALID_HANDLE_VALUE As Integer = -1
 Private Const IO_BUFFER_SIZE As Integer = 1024
 Private Const FILE_FLAG_OVERLAPPED As Int32 = &H40000000
 Private Const ERROR_IO_PENDING As Int32 = 997
 Private Const WAIT_OBJECT_0 As Int32 = 0
 Private Const ERROR_IO_INCOMPLETE As Int32 = 996
 Private Const WAIT_TIMEOUT As Int32 = &H102&
 Private Const INFINITE As Int32 = &HFFFFFFFF

#End Region
#Region "Win32API"
 '// Win32 API
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
SetCommState(ByVal hCommDev As IntPtr, ByRef lpDCB As DCB) As Int32
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
GetCommState(ByVal hCommDev As IntPtr, ByRef lpDCB As DCB) As Int32
 End Function
 <DllImport("kernel32.dll", SetlastError:=True, CharSet:=CharSet.Auto)> Private
Shared Function BuildCommDCB(ByVal lpDef As String, ByRef lpDCB As DCB) As Int32
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
SetupComm(ByVal hFile As IntPtr, ByVal dwInQueue As Int32, ByVal dwOutQueue As
Int32) As Int32
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
SetCommTimeouts(ByVal hFile As IntPtr, ByRef lpCommTimeouts As COMMTIMEOUTS) As
Int32
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
GetCommTimeouts(ByVal hFile As IntPtr, ByRef lpCommTimeouts As COMMTIMEOUTS) As
Int32
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
ClearCommError(ByVal hFile As IntPtr, ByRef lpErrors As Int32, ByRef lpComStat As
COMSTAT) As Int32
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
PurgeComm(ByVal hFile As IntPtr, ByVal dwFlags As Int32) As Int32
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
EscapeCommFunction(ByVal hFile As IntPtr, ByVal ifunc As Int32) As Boolean
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
WaitCommEvent(ByVal hFile As IntPtr, ByRef Mask As EventMasks, ByRef lpOverlap As
OVERLAPPED) As Int32
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
WriteFile(ByVal hFile As IntPtr, ByVal Buffer As Byte(), ByVal
nNumberOfBytesToWrite As Integer, ByRef lpNumberOfBytesWritten As Integer, ByRef
lpOverlapped As OVERLAPPED) As Integer
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
ReadFile(ByVal hFile As IntPtr, <Out()> ByVal Buffer As Byte(), ByVal
nNumberOfBytesToRead As Integer, ByRef lpNumberOfBytesRead As Integer, ByRef
lpOverlapped As OVERLAPPED) As Integer

 78

 End Function
 <DllImport("kernel32.dll", SetlastError:=True, CharSet:=CharSet.Auto)> Private
Shared Function CreateFile(ByVal lpFileName As String, ByVal dwDesiredAccess As
Integer, ByVal dwShareMode As Integer, ByVal lpSecurityAttributes As Integer, ByVal
dwCreationDisposition As Integer, ByVal dwFlagsAndAttributes As Integer, ByVal
hTemplateFile As Integer) As IntPtr
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
CloseHandle(ByVal hObject As IntPtr) As Boolean
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Public Shared Function
GetCommModemStatus(ByVal hFile As IntPtr, ByRef lpModemStatus As Int32) As Boolean
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
SetEvent(ByVal hEvent As IntPtr) As Boolean
 End Function
 <DllImport("kernel32.dll", SetlastError:=True, CharSet:=CharSet.Auto)> Private
Shared Function CreateEvent(ByVal lpEventAttributes As IntPtr, ByVal bManualReset
As Int32, ByVal bInitialState As Int32, ByVal lpName As String) As IntPtr
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
WaitForSingleObject(ByVal hHandle As IntPtr, ByVal dwMilliseconds As Int32) As
Int32
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
GetOverlappedResult(ByVal hFile As IntPtr, ByRef lpOverlapped As OVERLAPPED, ByRef
lpNumberOfBytesTransferred As Int32, ByVal bWait As Int32) As Int32
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
SetCommMask(ByVal hFile As IntPtr, ByVal lpEvtMask As Int32) As Int32
 End Function
 <DllImport("kernel32.dll", SetlastError:=True, CharSet:=CharSet.Auto)> Private
Shared Function GetDefaultCommConfig(ByVal lpszName As String, ByRef lpCC As
COMMCONFIG, ByRef lpdwSize As Integer) As Boolean
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
SetCommBreak(ByVal hFile As IntPtr) As Boolean
 End Function
 <DllImport("kernel32.dll", SetlastError:=True)> Private Shared Function
ClearCommBreak(ByVal hFile As IntPtr) As Boolean
 End Function

#End Region
#Region "Events"
 Public Event CommEvent As CommEventHandler
#End Region
#Region "Delegates"
 Public Delegate Sub CommEventHandler(ByVal source As Rs232, ByVal Mask As
EventMasks)
#End Region

 Public Property Port() As Integer
 '===
 '
 ' Description : Comunication Port
 ' Created : 21/09/2001 - 11:25:49
 '
 '

 79

 Parameters Info
 '
 ' Notes :
 '===
 Get
 Return miPort
 End Get
 Set(ByVal Value As Integer)
 miPort = Value
 End Set
 End Property
 Public Sub PurgeBuffer(ByVal Mode As PurgeBuffers)
 '===
 '
 ©2003 ALSTOM FIR S.p.A All rights reserved
 '
 ' Description : Purge Communication Buffer
 ' Created : 01/09/03 - 10:37:39
 ' Author : Corrado Cavalli
 '
 ' *Parameters Info*
 '
 ' Notes : This method will clear any
character into buffer, use TxAbort/RxAbort
 ' to terminate any pending
overlapped Tx/Rx operation.
 '===
 If (mhRS.ToInt32 > 0) Then PurgeComm(mhRS, Mode)
 End Sub
 Public Overridable Property Timeout() As Integer
 '===
 '
 ' Description: Comunication timeout in seconds
 ' Created : 21/09/2001 - 11:26:50
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 Get
 Return miTimeout
 End Get
 Set(ByVal Value As Integer)
 miTimeout = CInt(IIf(Value = 0, 500, Value))
 '// If Port is open updates it on the fly
 pSetTimeout()
 End Set
 End Property
 Public Property Parity() As DataParity
 '===
 '
 ' Description : Comunication parity
 ' Created : 21/09/2001 - 11:27:15
 '
 '
 Parameters Info
 '
 ' Notes :

 80

 '===
 Get
 Return meParity
 End Get
 Set(ByVal Value As DataParity)
 meParity = Value
 End Set
 End Property
 Public Property StopBit() As DataStopBit
 '===
 '
 ' Description: Comunication StopBit
 ' Created : 21/09/2001 - 11:27:37
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 Get
 Return meStopBit
 End Get
 Set(ByVal Value As DataStopBit)
 meStopBit = Value
 End Set
 End Property
 Public Property BaudRate() As Integer
 '===
 '
 ' Description: Comunication BaudRate
 ' Created : 21/09/2001 - 11:28:00
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 Get
 Return miBaudRate
 End Get
 Set(ByVal Value As Integer)
 miBaudRate = Value
 End Set
 End Property
 Public Property DataBit() As Integer
 '===
 '
 ' Description : Comunication DataBit
 ' Created : 21/09/2001 - 11:28:20
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 Get
 Return miDataBit
 End Get
 Set(ByVal Value As Integer)

 81

 miDataBit = Value
 End Set
 End Property
 Public Property BufferSize() As Integer
 '===
 '
 ' Description : Receive Buffer size
 ' Created : 21/09/2001 - 11:33:05
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 Get
 Return miBufferSize
 End Get
 Set(ByVal Value As Integer)
 miBufferSize = Value
 End Set
 End Property
 Public Overloads Sub Open()
 '===
 '
 ' Description : Initializes and Opens comunication
port
 ' Created : 21/09/2001 - 11:33:40
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 '// Get Dcb block,Update with current data
 Dim uDcb As DCB, iRc As Int32
 '// Set working mode
 meMode = Mode.Overlapped
 Dim iMode As Int32 = Convert.ToInt32(IIf(meMode = Mode.Overlapped,
FILE_FLAG_OVERLAPPED, 0))
 '// Initializes Com Port
 If miPort > 0 Then
 Try
 '// Creates a COM Port stream handle
 mhRS = CreateFile("\\.\COM" & miPort.ToString, GENERIC_READ
Or GENERIC_WRITE, 0, 0, OPEN_EXISTING, iMode, 0)
 If (mhRS.ToInt32 > 0) Then
 '// Clear all comunication errors
 Dim lpErrCode As Int32
 iRc = ClearCommError(mhRS, lpErrCode, New COMSTAT)
 '// Clears I/O buffers
 iRc = PurgeComm(mhRS, PurgeBuffers.RXClear Or
PurgeBuffers.TxClear)
 '// Gets COM Settings
 iRc = GetCommState(mhRS, uDcb)
 '// Updates COM Settings
 Dim sParity As String = "NOEM"
 sParity = sParity.Substring(meParity, 1)
 '// Set DCB State
 Dim sDCBState As String = String.Format("baud={0}

 82

parity={1} data={2} stop={3}", miBaudRate, sParity, miDataBit, CInt(meStopBit))
 iRc = BuildCommDCB(sDCBState, uDcb)
 uDcb.Parity = CByte(meParity)
 '// Set Xon/Xoff State
 If mbUseXonXoff Then
 uDcb.Bits1 = 768
 Else
 uDcb.Bits1 = 0
 End If
 iRc = SetCommState(mhRS, uDcb)
 If iRc = 0 Then
 Dim sErrTxt As String = New
Win32Exception().Message
 Throw New CIOChannelException("Unable to set
COM state " & sErrTxt)
 End If
 '// Setup Buffers (Rx,Tx)
 iRc = SetupComm(mhRS, miBufferSize, miBufferSize)
 '// Set Timeouts
 pSetTimeout()
 '//Enables events if required
 If mbEnableEvents Then Me.EnableEvents()
 Else
 '// Raise Initialization problems
 Dim sErrTxt As String = New Win32Exception().Message
 Throw New CIOChannelException("Unable to open COM" +
miPort.ToString + ControlChars.CrLf + sErrTxt)
 End If
 Catch Ex As Exception
 '// Generica error
 Throw New CIOChannelException(Ex.Message, Ex)
 End Try
 Else
 '// Port not defined, cannot open
 Throw New ApplicationException("COM Port not defined,use Port
property to set it before invoking InitPort")
 End If
 End Sub
 Public Overloads Sub Open(ByVal Port As Integer, ByVal BaudRate As Integer,
ByVal DataBit As Integer, ByVal Parity As DataParity, ByVal StopBit As DataStopBit,
ByVal BufferSize As Integer)
 '===
 '
 ' Description: Opens comunication port (Overloaded
method)
 ' Created : 21/09/2001 - 11:33:40
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 Me.Port = Port
 Me.BaudRate = BaudRate
 Me.DataBit = DataBit
 Me.Parity = Parity
 Me.StopBit = StopBit
 Me.BufferSize = BufferSize
 Open()

 83

 End Sub
 Public Sub Close()
 '===
 '
 ' Description: Close comunication channel
 ' Created : 21/09/2001 - 11:38:00
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 If mhRS.ToInt32 > 0 Then
 If mbEnableEvents = True Then
 Me.DisableEvents()
 End If
 Dim ret As Boolean = CloseHandle(mhRS)
 If Not ret Then Throw New Win32Exception
 mhRS = New IntPtr(0)
 End If
 End Sub
 ReadOnly Property IsOpen() As Boolean
 '===
 '
 ' Description: Returns Port Status
 ' Created : 21/09/2001 - 11:38:51
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 Get
 Return CBool(mhRS.ToInt32 > 0)
 End Get
 End Property
 Public Overloads Sub Write(ByVal Buffer As Byte())
 '===
 '
 ' Description: Transmit a stream
 ' Created : 21/09/2001 - 11:39:51
 '
 '
 Parameters Info
 ' Buffer : Array of Byte() to write
 ' Notes :
 '===
 Dim iRc, iBytesWritten As Integer, hOvl As GCHandle
 '---
 muOvlW = New Overlapped
 If mhRS.ToInt32 <= 0 Then
 Throw New ApplicationException("Please initialize and open port
before using this method")
 Else
 '// Creates Event
 Try
 hOvl = GCHandle.Alloc(muOvlW, GCHandleType.Pinned)
 muOvlW.hEvent = CreateEvent(Nothing, 1, 0, Nothing)
 If muOvlW.hEvent.ToInt32 = 0 Then Throw New

 84

ApplicationException("Error creating event for overlapped writing")
 '// Clears IO buffers and sends data
 iRc = WriteFile(mhRS, Buffer, Buffer.Length, 0, muOvlW)
 If iRc = 0 Then
 If Marshal.GetLastWin32Error <> ERROR_IO_PENDING Then
 Throw New ApplicationException("Write command
error")
 Else
 '// Check Tx results
 If GetOverlappedResult(mhRS, muOvlW,
iBytesWritten, 1) = 0 Then
 Throw New ApplicationException("Write
pending error")
 Else
 '// All bytes sent?
 If iBytesWritten <> Buffer.Length Then
Throw New ApplicationException("Write Error - Bytes Written " &
iBytesWritten.ToString & " of " & Buffer.Length.ToString)
 End If
 End If
 End If
 Finally
 '//Closes handle
 CloseHandle(muOvlW.hEvent)
 If (hOvl.IsAllocated = True) Then hOvl.Free()
 End Try
 End If
 End Sub
 Public Overloads Sub Write(ByVal Buffer As String)
 '===
 '
 ' Description : Writes a string to RS232
 ' Created : 04/02/2002 - 8:46:42
 '
 ' *Parameters Info*
 '
 ' Notes : 24/05/2002 Fixed problem with ASCII
Encoding
 '===
 Dim oEncoder As New System.Text.ASCIIEncoding
 Dim oEnc As Encoding = oEncoder.GetEncoding(1252)
 '---
 Dim aByte() As Byte = oEnc.GetBytes(Buffer)
 Me.Write(aByte)
 End Sub
 Public Function Read(ByVal Bytes2Read As Integer) As Integer
 '===
 '
 ' Description: Read Bytes from Port
 ' Created : 21/09/2001 - 11:41:17
 '
 '
 Parameters Info
 ' Bytes2Read : Bytes to read from port
 ' Returns : Number of
readed chars
 '
 ' Notes :
 '===

 85

 Dim iReadChars, iRc As Integer, bReading As Boolean, hOvl As GCHandle
 '--
 '// If Bytes2Read not specified uses Buffersize
 If Bytes2Read = 0 Then Bytes2Read = miBufferSize
 muOvlR = New Overlapped
 If mhRS.ToInt32 <= 0 Then
 Throw New ApplicationException("Please initialize and open port
before using this method")
 Else
 '// Get bytes from port
 Try
 hOvl = GCHandle.Alloc(muOvlR, GCHandleType.Pinned)
 muOvlR.hEvent = CreateEvent(Nothing, 1, 0, Nothing)
 If muOvlR.hEvent.ToInt32 = 0 Then Throw New
ApplicationException("Error creating event for overlapped reading")
 '// Clears IO buffers and reads data
 ReDim mabtRxBuf(Bytes2Read - 1)
 iRc = ReadFile(mhRS, mabtRxBuf, Bytes2Read, iReadChars,
muOvlR)
 If iRc = 0 Then
 If Marshal.GetLastWin32Error() <> ERROR_IO_PENDING
Then
 Throw New ApplicationException("Read pending
error")
 Else
 '// Wait for characters
 iRc = WaitForSingleObject(muOvlR.hEvent,
miTimeout)
 Select Case iRc
 Case WAIT_OBJECT_0
 '// Some data received...
 If GetOverlappedResult(mhRS,
muOvlR, iReadChars, 0) = 0 Then
 Throw New
ApplicationException("Read pending error.")
 Else
 Return iReadChars
 End If
 Case WAIT_TIMEOUT
 Throw New IOTimeoutException("Read
Timeout.")
 Case Else
 Throw New
ApplicationException("General read error.")
 End Select
 End If
 Else
 Return (iReadChars)
 End If
 Finally
 '//Closes handle
 CloseHandle(muOvlR.hEvent)
 If (hOvl.IsAllocated) Then hOvl.Free()
 End Try
 End If
 End Function
 Overridable ReadOnly Property InputStream() As Byte()
 '===
 '

 86

 ' Description: Returns received data as Byte()
 ' Created : 21/09/2001 - 11:45:06
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 Get
 Return mabtRxBuf
 End Get
 End Property
 Overridable ReadOnly Property InputStreamString() As String
 '===
 '
 ' Description : Return a string containing received data
 ' Created : 04/02/2002 - 8:49:55
 '
 ' *Parameters Info*
 '
 ' Notes :
 '===
 Get
 Dim oEncoder As New System.Text.ASCIIEncoding
 Dim oEnc As Encoding = oEncoder.GetEncoding(1252)
 '---
 If Not Me.InputStream Is Nothing Then Return
oEnc.GetString(Me.InputStream)
 End Get
 End Property
 Public Sub ClearInputBuffer()
 '===
 '
 ' Description: Clears Input buffer
 ' Created : 21/09/2001 - 11:45:34
 '
 '
 Parameters Info
 '
 ' Notes : Gets all character until end of
buffer
 '===
 If mhRS.ToInt32 > 0 Then
 PurgeComm(mhRS, PURGE_RXCLEAR)
 End If
 End Sub
 Public WriteOnly Property Rts() As Boolean
 '===
 '
 ' Description: Set/Resets RTS Line
 ' Created : 21/09/2001 - 11:45:34
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 Set(ByVal Value As Boolean)
 If mhRS.ToInt32 > 0 Then

 87

 If Value Then
 EscapeCommFunction(mhRS, Lines.SetRts)
 Else
 EscapeCommFunction(mhRS, Lines.ClearRts)
 End If
 End If
 End Set
 End Property
 Public WriteOnly Property Dtr() As Boolean
 '===
 '
 ' Description: Set/Resets DTR Line
 ' Created : 21/09/2001 - 11:45:34
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 Set(ByVal Value As Boolean)
 If mhRS.ToInt32 > 0 Then
 If Value Then
 EscapeCommFunction(mhRS, Lines.SetDtr)
 Else
 EscapeCommFunction(mhRS, Lines.ClearDtr)
 End If
 End If
 End Set
 End Property
 Public ReadOnly Property ModemStatus() As ModemStatusBits
 '===
 '
 ' Description : Gets Modem status
 ' Created : 28/02/2002 - 8:58:04
 '
 ' *Parameters Info*
 '
 ' Notes :
 '===
 Get
 If mhRS.ToInt32 <= 0 Then
 Throw New ApplicationException("Please initialize and open
port before using this method")
 Else
 '// Retrieve modem status
 Dim lpModemStatus As Int32
 If Not GetCommModemStatus(mhRS, lpModemStatus) Then
 Throw New ApplicationException("Unable to get modem
status")
 Else
 Return CType(lpModemStatus, ModemStatusBits)
 End If
 End If
 End Get
 End Property
 Public Function CheckLineStatus(ByVal Line As ModemStatusBits) As Boolean
 '===
 '
 ' Description : Check status of a Modem Line

 88

 ' Created : 28/02/2002 - 10:25:17
 '
 ' *Parameters Info*
 '
 ' Notes :
 '===
 Return Convert.ToBoolean(ModemStatus And Line)
 End Function
 Public Property UseXonXoff() As Boolean
 '===
 '
 ' Description : Set XON/XOFF mode
 ' Created : 26/05/2003 - 21:16:18
 '
 ' *Parameters Info*
 '
 ' Notes :
 '===
 Get
 Return mbUseXonXoff
 End Get
 Set(ByVal Value As Boolean)
 mbUseXonXoff = Value
 End Set
 End Property
 Public Sub EnableEvents()
 '===
 '
 ' Description : Enables monitoring of incoming events
 ' Created : 15/07/2003 - 12:00:56
 '
 ' *Parameters Info*
 '
 ' Notes :
 '===
 If mhRS.ToInt32 <= 0 Then
 Throw New ApplicationException("Please initialize and open port
before using this method")
 Else
 If moEvents Is Nothing Then
 mbEnableEvents = True
 moEvents = New Thread(AddressOf pEventsWatcher)
 moEvents.IsBackground = True
 moEvents.Start()
 End If
 End If
 End Sub
 Public Sub DisableEvents()
 '===
 '
 ' Description : Disables monitoring of incoming events
 ' Created : 15/07/2003 - 12:00:56
 '
 ' *Parameters Info*
 '
 ' Notes :
 '===
 If mbEnableEvents = True Then
 SyncLock Me

 89

 mbEnableEvents = False '// This should
kill the thread
 End SyncLock
 '// Let WaitCommEvent exit...
 If muOvlE.hEvent.ToInt32 <> 0 Then SetEvent(muOvlE.hEvent)
 moEvents = Nothing
 End If
 End Sub
 Public Property RxBufferThreshold() As Int32
 '===
 '
 ©2003 www.codeworks.it All rights reserved
 '
 ' Description : Numer of characters into input buffer
 ' Created : 16/07/03 - 9:00:57
 ' Author : Corrado Cavalli
 '
 ' *Parameters Info*
 '
 ' Notes :
 '===
 Get
 Return miBufThreshold
 End Get
 Set(ByVal Value As Int32)
 miBufThreshold = Value
 End Set
 End Property
 Public Shared Function IsPortAvailable(ByVal portNumber As Int32) As Boolean
 '===
 ' ©2003
www.codeworks.it All rights reserved
 '
 ' Description : Returns true if a specific port number is supported
by the system
 ' Created : 14/09/03 - 17:00:57
 ' Author : Corrado Cavalli
 '
 ' *Parameters Info*
 ' portNumber : port number to check
 '
 ' Notes :
 '===
 If portNumber <= 0 Then
 Return False
 Else
 Dim cfg As COMMCONFIG
 Dim cfgsize As Int32 = Marshal.SizeOf(cfg)
 cfg.dwSize = cfgsize
 Dim ret As Boolean = GetDefaultCommConfig("COM" + portNumber.ToString,
cfg, cfgsize)
 Return ret
 End If
 End Function
 Public Sub SetBreak()
 '===
 ' ©2003
www.codeworks.it All rights reserved
 '

 90

 ' Description : Set COM in break modem
 ' Created : 12/10/03 - 10:00:57
 ' Author : Corrado Cavalli
 '
 ' *Parameters Info*
 '
 '
 ' Notes :
 '===
 If mhRS.ToInt32 > 0 Then
 If SetCommBreak(mhRS) = False Then Throw New Win32Exception
 End If
 End Sub
 Public Sub ClearBreak()
 '===
 ' ©2003
www.codeworks.it All rights reserved
 '
 ' Description : Clear COM break mode
 ' Created : 12/10/03 - 10:02:57
 ' Author : Corrado Cavalli
 '
 ' *Parameters Info*
 '
 '
 ' Notes :
 '===
 If mhRS.ToInt32 > 0 Then
 If ClearCommBreak(mhRS) = False Then Throw New Win32Exception
 End If

 End Sub
 Public ReadOnly Property InBufferCount() As Int32
 '===
 ' ©2003
www.codeworks.it All rights reserved
 '
 ' Description : Returns the number of bytes inside Rx buffer
 ' Created : 20/04/05 - 10:02:57
 ' Author : Corrado Cavalli/Jean-Pierre ZANIER
 '
 '
 '===
 Get
 Dim comStat As COMSTAT
 Dim lpErrCode As Int32
 Dim iRc As Int32
 comStat.cbInQue = 0
 If mhRS.ToInt32 > 0 Then
 iRc = ClearCommError(mhRS, lpErrCode, comStat)
 Return comStat.cbInQue
 End If
 Return 0
 End Get
 End Property

#Region "Finalize"
 Protected Overrides Sub Finalize()

 91

 '===
 '
 ' Description : Closes COM port if object is garbage collected and
still owns
 ' COM port reosurces
 '
 ' Created : 27/05/2002 - 19:05:56
 '
 ' *Parameters Info*
 '
 ' Notes :
 '===
 Try
 If Not mbDisposed Then
 If mbEnableEvents Then Me.DisableEvents()
 Close()
 End If
 Finally
 MyBase.Finalize()
 End Try
 End Sub
#End Region

#Region "Private Routines"
 Private Sub pSetTimeout()
 '===
 '
 ' Description: Set comunication timeouts
 ' Created : 21/09/2001 - 11:46:40
 '
 '
 Parameters Info
 '
 ' Notes :
 '===
 Dim uCtm As COMMTIMEOUTS
 '// Set ComTimeout
 If mhRS.ToInt32 <= 0 Then
 Exit Sub
 Else
 '// Changes setup on the fly
 With uCtm
 .ReadIntervalTimeout = 0
 .ReadTotalTimeoutMultiplier = 0
 .ReadTotalTimeoutConstant = miTimeout
 .WriteTotalTimeoutMultiplier = 10
 .WriteTotalTimeoutConstant = 100
 End With
 SetCommTimeouts(mhRS, uCtm)
 End If
 End Sub
 Private Sub pDispose() Implements IDisposable.Dispose
 '===
 '
 ' Description : Handles correct class disposing Write
 ' Created : 27/05/2002 - 19:03:06
 '
 ' *Parameters Info*
 '

 92

 ' Notes :
 '===
 If (Not mbDisposed AndAlso (mhRS.ToInt32 > 0)) Then
 '// Closes Com Port releasing resources
 Try
 Me.Close()
 Finally
 mbDisposed = True
 '// Suppress unnecessary Finalize overhead
 GC.SuppressFinalize(Me)
 End Try
 End If

 End Sub
 Private Sub pEventsWatcher()
 '===
 ' ©2003
www.codeworks.it All rights reserved
 '
 ' Description : Watches for all events raising events when they
arrive to the port
 ' Created : 15/07/03 - 11:45:13
 ' Author : Corrado Cavalli
 '
 ' *Parameters Info*
 '
 ' Notes :
 '===
 '// Events to watch
 Dim lMask As EventMasks = EventMasks.Break Or EventMasks.CarrierDetect Or
EventMasks.ClearToSend Or _
 EventMasks.DataSetReady Or EventMasks.Ring Or EventMasks.RxChar Or
EventMasks.RXFlag Or _
 EventMasks.StatusError
 Dim lRetMask As EventMasks, iBytesRead, iTotBytes, iErrMask As Int32, iRc
As Int32, aBuf As New ArrayList
 Dim uComStat As COMSTAT
 '-----------------------------------
 '// Creates Event
 muOvlE = New Overlapped
 Dim hOvlE As GCHandle = GCHandle.Alloc(muOvlE, GCHandleType.Pinned)
 muOvlE.hEvent = CreateEvent(Nothing, 1, 0, Nothing)
 If muOvlE.hEvent.ToInt32 = 0 Then Throw New ApplicationException("Error
creating event for overlapped reading")
 '// Set mask
 SetCommMask(mhRS, lMask)
 '// Looks for RxChar
 While mbEnableEvents = True
 WaitCommEvent(mhRS, lMask, muOvlE)
 Select Case WaitForSingleObject(muOvlE.hEvent, INFINITE)
 Case WAIT_OBJECT_0
 '// Event (or abort) detected
 If mbEnableEvents = False Then Exit While
 If (lMask And EventMasks.RxChar) > 0 Then
 '// Read incoming data
 ClearCommError(mhRS, iErrMask, uComStat)
 If iErrMask = 0 Then
 Dim ovl As New Overlapped

 93

 Dim hOvl As GCHandle = GCHandle.Alloc(ovl,
GCHandleType.Pinned)
 ReDim mabtRxBuf(uComStat.cbInQue - 1)
 If ReadFile(mhRS, mabtRxBuf, uComStat.cbInQue,
iBytesRead, ovl) > 0 Then
 If iBytesRead > 0 Then
 '// Some bytes read, fills temporary buffer
 If iTotBytes < miBufThreshold Then
 aBuf.AddRange(mabtRxBuf)
 iTotBytes += iBytesRead
 End If
 '// Threshold reached?, raises event
 If iTotBytes >= miBufThreshold Then
 '//Copies temp buffer into Rx buffer
 ReDim mabtRxBuf(iTotBytes - 1)
 aBuf.CopyTo(mabtRxBuf)
 '// Raises event
 Try
 Me.OnCommEventReceived(Me, lMask)
 Finally
 iTotBytes = 0
 aBuf.Clear()
 End Try
 End If
 End If
 End If
 If (hOvl.IsAllocated) Then hOvl.Free()
 End If
 Else
 '// Simply raises OnCommEventHandler event
 Me.OnCommEventReceived(Me, lMask)
 End If
 Case Else
 Dim sErr As String = New Win32Exception().Message
 Throw New ApplicationException(sErr)
 End Select
 End While
 '// Release Event Handle
 CloseHandle(muOvlE.hEvent)
 muOvlE.hEvent = IntPtr.Zero
 If (hOvlE.IsAllocated) Then hOvlE.Free()
 muOvlE = Nothing
 End Sub

#End Region

#Region "Protected Routines"
 Protected Sub OnCommEventReceived(ByVal source As Rs232, ByVal mask As
EventMasks)
 '===
 ' ©2003
www.codeworks.it All rights reserved
 '
 ' Description : Raises CommEvent
 ' Created : 15/07/03 - 15:09:50
 ' Author : Corrado Cavalli
 '

 94

 ' *Parameters Info*
 '
 ' Notes :
 '===
 Dim del As CommEventHandler = Me.CommEventEvent
 If (Not del Is Nothing) Then
 Dim SafeInvoker As ISynchronizeInvoke
 Try
 SafeInvoker = DirectCast(del.Target, ISynchronizeInvoke)
 Catch
 End Try
 If (Not SafeInvoker Is Nothing) Then
 SafeInvoker.Invoke(del, New Object() {source, mask})
 Else
 del.Invoke(source, mask)
 End If
 End If
 End Sub
#End Region

End Class
#End Region

#Region "Exceptions"
Public Class CIOChannelException : Inherits ApplicationException
 '===
 '
 ' Module : CChannellException
 ' Description: Customized Channell Exception
 ' Created : 17/10/2001 - 10:32:37
 '
 ' Notes : This exception is raised when
NACK error found
 '===
 Sub New(ByVal Message As String)
 MyBase.New(Message)
 End Sub
 Sub New(ByVal Message As String, ByVal InnerException As Exception)
 MyBase.New(Message, InnerException)
 End Sub
End Class
Public Class IOTimeoutException : Inherits CIOChannelException
 '===
 '
 ' Description : Timeout customized exception
 ' Created : 28/02/2002 - 10:43:43
 '
 ' *Parameters Info*
 '
 ' Notes :
 '===
 Sub New(ByVal Message As String)
 MyBase.New(Message)
 End Sub
 Sub New(ByVal Message As String, ByVal InnerException As Exception)
 MyBase.New(Message, InnerException)
 End Sub
End Class
#End Region

 95

Appendix C. Schematic

Appendix D. PCB Layout

Figure 30: Display prototype unit with no PIC

 96

Figure 31: Production level prototype with PIC

Appendix E. Test Data

E.1. Mist Data

Case # 2: Mist

Iteration Initial Cap Final Cap Change in Cap
1 6 20 14
2 5 24 19
3 4 20 16
4 2 16 14
5 1 16 15
6 0 10 10
7 -8 3 11
8 -6 4 10
9 -9 1 10

10 -10 -2 8
11 -12 -1 11
12 -13 -2 11

 97

13 -15 -5 10
14 -13 -4 9
15 -15 -4 11
16 -4 4.6 8.6
17 -4 5 9
18 -5 7 12
19 2 10 8
20 0 9 9
21 -1 10 11
22 -3 9 12
23 -5 3 8
24 -5 7 12
25 -6 6 12
26 -6 4 10
27 -7 6 13
28 -8 1 9
29 -9 3 12
30 -10 0 10
31 -12 0 12
32 -11 0 11
33 -12 1 13
34 -18 -4 14
35 -15 -5 10
36 -15 -1 14
37 -5 9 14
38 -11 0 11
39 -12 -2 10
40 10 25 15
41 10 18 8
42 2 18 16
43 3 15 12
44 3 12 9
45 0 12 12
46 -1 10 11
47 -2 13 15
48 -4 12 16
49 -7 2 9
50 -10 2 12

E2. Rain Data

Case # 4: Rain

Iteration Delta
1 38
2 53
3 109
4 125

 98

5 17.9
6 54
7 99
8 30
9 30

10 5
11 20
12 6.57
13 36
14 54
15 75
16 27
17 91
18 51
19 33
20 89
21 5.8
22 68
23 45
24 52.35
25 138
26 146
27 124
28 25.24
29 24
30 80.4
31 35.4
32 21
33 5.7
34 40.4
35 55
36 138
37 25.8
38 87.523
39 118
40 56
41 22
42 74
43 78
44 102
45 39
46 40.4
47 90
48 47
49 74.56
50 89.93
51 166
52 104.1
53 74.58

 99

54 68.04
55 158.78
56 109.1
57 70.01
58 86.609
59 85.99
60 153
61 101
62 46
63 33
64 47
65 27.47
66 89
67 78
68 23
69 73
70 45
71 54
72 31
73 36
74 107
75 148
76 90.5
77 35
78 156
79 32
80 58.6
81 79.56
82 40
83 107
84 71
85 22.32
86 28.2
87 111
88 20.7
89 103
90 71.5
91 43
92 102
93 108
94 105
95 53.5
96 75.5
97 73.5
98 31
99 108

100 127

 100

E.3. Downpour Data

Case # 6: Downpour

Iteration Initial Cap Final Cap Change in Cap Delta
1 0 210
2 0 232
3 0 253

E.4. Leaf Data

Case # 7: Leaf

Iteration Initial Cap Final Cap Change in Cap
1 67 932 865
2 49 1039 990
3 56 938 882
4 52 1036 984
5 46 930 884
6 26 736 710
7 38 938 900
8 49 997 948
9 42 938 896

10 52 810 758
11 64 1093 1029
12 61 1031 970
13 61 1028 967
14 61 1107 1046
15 61 855 794
16 60 865 805
17 61 969 908
18 61 915 854
19 58 1043 985
20 51 973 922
21 54 1042 988
22 50 942 892
23 43 958 915
24 46 971 925
25 49 1044 995
26 50 938 888
27 48 898 850
28 48 902 854
29 46 1069 1023
30 39 1109 1070
31 46 728 682
32 14 602 588
33 14 888 874

 101

34 13 815 802
35 8 807 799
36 13 876 863
37 13 1152 1139
38 14 992 978
39 14 1028 1014
40 14 1112 1098
41 13 973 960
42 14 1143 1129
43 8 1077 1069
44 8 1162 1154
45 5 978 973
46 5 764 759
47 4 821 817
48 4 854 850
49 4 738 734
50 4 860 856

E.5. Finger/Hand Data

Case # 9: Finger/Hand
Iteration Initial Cap Final Cap Change in Cap

1 50 1430 1380
2 55 1350 1295
3 57 1359 1302
4 59 1370 1311
5 64 1387 1323
6 58 1353 1295
7 61 1394 1333
8 63 1301 1238
9 65 1394 1329

10 68 1402 1334
11 62 1348 1286
12 63 1424 1361
13 63.8 1372 1308.2
14 66 1375 1309
15 68 1330 1262
16 71 1395 1324
17 65 1440 1375
18 54 1335 1281
19 56 1358 1302
20 57 1400 1343
21 59 1388 1329
22 64 1358 1294
23 65 1343 1278
24 68 1350 1282
25 68 1358 1290

 102

26 70 1370 1300
27 70 1330 1260
28 59 1350 1291
29 67 1360 1293
30 69 1390 1321
31 71 1384 1313
32 19 1406 1387
33 22 1436 1414
34 31 1460 1429
35 36 1276 1240
36 37 1528 1491
37 45 1317 1272
38 47 1348 1301
39 48 1325 1277
40 59 1295 1236
41 53 1306 1253
42 56 1358 1302
43 60 1360 1300
44 62 1348 1286
45 63 1603 1540
46 65 1356 1291
47 65 1557 1492
48 67 1480 1413
49 70 1307 1237
50 71 1377 1306

 103

E6. Testing Pictures

 Figure 32: Startup display of Visual Basic program

 104

 Figure 33: Test with Mist

 105

Figure 33: Test with Rain level

 106

Figure 34: Test with Downpour

 107

Figure 35: Test with Leaf

 108

 Figure 36: Test with hand

Appendix F. COMSOL Reference (Arslan Qaiser – Application Note)

COMSOL:

COMSOL Multiphysics is an interactive engineering and physics tool that performs equation based

modeling in a visual interface. This software allows the modeling and simulation of any physical

phenomena in a way that’s easy to implement. It comes pre-installed with different model libraries

that can be readily used. Some of the libraries include modules such as Chemical Engineering

Modules, MEMS Modules, RF Modules and Structural Mechanics Module.

In this application note, only the Electrostatics part of MEMS module will be discussed. Specifically it

 109

will be shown how to approach a 3D electrostatics problem by first creating a 2D geometry using the

array tools and then extrude it to a 3D geometry, perform Mesh analysis and compute the capacitance

using the Electrostatics application mode’s port boundary conditions.

Implementation:

In order to design a capacitive sensor (also called a comb drive) in COMSOL, a series of steps need to

be followed:

A. Model Navigator

1. Start by opening the Model Navigator after running COMSOL

2. Select the MEMS Module → Electrostatics → Electrostatics as shown in the following

figure:

Figure 3

B. Geometry Modeling

 110

1. To draw a 2D geometry, click on Work-Plane Setting under Draw and select z=0

2. Draw a rectangle by clicking on the Rectangle/Square icon in the draw toolbar. Once

drawn, it is labeled as ‘R1’.

3. Similarly, draw a series of rectangles by copy/paste and shift in the y-direction by 8x10-6 as

shown:

Figure 4

Note: The displacement can be different from 8x10-6 depending on the size of the sensor

that is desired. For this application note, this size was chosen to make it easy for

the reader to follow.

4. Select all the rectangles by using Ctrl+A then copy/paste again, this time adding both x-

displacement and y-displacement to get the following: (x: 14x10-6, y: 4x10-6)

 111

Figure 5

5. Use the Union and Delete Interior Boundaries button to merge all the rectangles (from

R1-R11) and get to uniform ‘comb like’ structures as shown. These are called composite

objects (CO2 and CO3 below)

Figure 6

 112

6. Draw a rectangle that covers the comb structure (labeled as R1). This will serve as the

substrate and bounding air space for the analysis. This will be helpful in the 3D analysis

when a top and bottom layer will be added to the comb structure.

Figure 7

C. Extruding to 3D Geometry

1. The first step is to extrude the two comb drives to a 3D geometry. Select Extrude from the

Draw menu and select the composite objects (CO2 and CO3).

2. Type in 2x10-6 in the distance field. The distance field corresponds to the height of the

comb in the 3D geometry. This value can change based on the application of the

capacitive sensor. The 3D comb drive can be seen in Figure 9 below.

 113

Figure 8

Figure 9

3. Next step is to include a layer of air on the top layer of the 3D comb. To do this, the

rectangle R1 will be extruded in a similar manner as CO2 and CO3. But in this case, the

distance is set to 12x10-6.

4. Once the top layer has been added, the bottom substrate layer can be extruded in the

same way. To add the bottom layer, set the distance to -10x10-6. The negative sign

indicates that the bottom layer will be extruded in the –z-direction. The following figure

shows the complete 3D comb geometry.

 114

Figure 10

D. Physics Settings

1. Subdomain Settings:

The 3D comb geometry shown in Figure 10 consists of two sub-domains. First is the top

layer of air and second is the bottom silicon substrate layer. Select Subdomain from the

Physics menu.

Note: These layers can represent different materials. For example, the top layer could be

glass or plastic and the bottom layer can be a substrate made of Teflon, FR4 instead of

silicon. The way COMSOL identifies these different materials is through a property called

‘Dielectric permittivity’ (Єr) of the material. A list of different Dielectric permittivity is

given in Table 3 (Appendix).

In this case, the following values are used:

Settings Subdomain 1 (Silicon) Subdomain 2 (Air)

Єr 11.9 1.0

ρ 0 0

Table 1

 115

Figure 11

2. Boundary Conditions:

There are three boundary conditions that need to be defined. First is the ground, second

is the port (voltage) and third is the symmetry or zero charge condition. To access

boundary conditions, select Boundary Settings under the Physics menu.

Table 2

3. After applying the above boundary conditions, click on the Port tab and make sure the

dialog box looks exactly like shown in figure 12.

Settings
Boundary: 1-5,

7,12,13,52,53

Boundary: 8-11,

14-27, 42-46

Boundary: 28-41,

47-51

Boundary

Condition

Symmetry/ Zero

Charge
Ground Port (voltage)

 116

Figure 12

4. Make sure that the Select by group box is checked. Click on one set of Boundaries and

make that it corresponds to the right comb. The following two figures show the comb

geometries corresponding to different sets of Boundary conditions.

Figure 13: Left picture shows the comb that is grounded.

 Right picture shows the comb that is a port.

E. Mesh Analysis

1. In order to do a Mesh Analysis, click on Mesh → Initialize Mesh.

 117

2. The following Progress box appears:

Figure 14

3. Once the Create Mesh Analysis is complete, the comb structure will look like the following

figure:

Figure 15

F. Solve Problem

1. In order to get a solution to the problem, click on Solve → Solve Problem

 118

2. The following Progress box appears:

Figure 16

3. Once the Solve Problem Analysis is complete, the final capacitive sensor structure appears

as follows:

 Figure 17: Red Color shows high voltage (1V) and blue color is low voltage (ground)

 119

G. Compute Capacitance

1. In order to calculate the capacitance of the capacitive sensor, select

 Postprocessing → Data Display → Global. The following Global Data Display box

 appears:

Figure 18

2. Figure 18 shows the final results:

Capacitance = 2.19388 x 10-14 F = 0.0219388 pF

Material Dielectric constant Material Dielectric constant

Air 1.0 Nylon 3.4-22.4

Amber 2.6-2.7 Paper (dry) 1.5-3.0

Asbestos Fiber 3.1-4.8 Paper (coated) 2.5-4.0

Epoxy Resin 3.4-3.7 Paraffin (solid) 2.0-3.0

Ethyl Alcohol 6.5-25 Plexiglas 2.6-3.5

 120

(absolute)

Fiber 5.0 Polystyrene 2.4-3.0

Formica 3.6-6.0 Quartz 5.0

Glass (electrical) 3.8-14.5 Quartz (fused) 3.78

Glass (Pyrex) 4.6-5.0 Rubber (hard) 2.0-4.0

Glass (window) 7.6 Styrofoam 1.03

Silicone (glass)

(molding)
3.2-4.7 Teflon 2.1

Silicone (glass) 3.7-4.3 Titanium Dioxide 100

Soil (dry) 4.4 Vaseline 2.16

Mica (electrical) 4.0-9.0 Water (distilled) 34-78

Table 3: Dielectric Constant Table

Appendix G. References

Lee, Mark. Cypress Semiconductor Corp. "The Art of Capacitive Touch Sensing."PlanetAnalog.com. 06
Mar. 2006. Web. 18 Feb. 2010.
<http://www.planetanalog.com/features/showArticle.jhtml?articleID=181401898>.

Brychta, Michael. "Measure Capacitive Sensors With A Sigma-Delta Modulator."Electronicdesign.com.
28 Apr. 2005. Web. 15 Feb. 2010. <http://electronicdesign.com/article/analog-and-mixed-
signal/measure-capacitive-sensors-with-a-sigma-delta-modu.aspx>.

Fairchild Semiconductor. "MC78XX/LM78XX/MC78XXA 3-Terminal 1A Positive Voltage
Regulator." Datasheetanalog.org. Fairchild Semiconductor, 2001. Web. 13 Mar. 2010.
<http://www.datasheetcatalog.org/datasheet/fairchild/LM7805.pdf>.

Microchip Technology Inc. "28/40/44-Pin Enhanced Flash Microcontrollers with 10-Bit A/D and
NanoWatt Technology." Microchip.com. Microchip Technology Inc., 2004. Web. 24 Feb. 2010.
<http://ww1.microchip.com/downloads/en/DeviceDoc/39631a.pdf>.

Erlich Industrial Development, Corp. "Voltage Regulator." Eidusa.com. Erlich Industrial Development,
Corp. Web. 13 Mar. 2010. <http://www.eidusa.com/Electronics_Voltage_Regulator.htm>.

