

C++ Text Searching

Algorithms

Developing powerful and efficient text searching

techniques in C++

Trieu Nguyen

ECE 480

Design Team 1

4/2/2010

Developing powerful and efficient text searching techniques in C++

Page | 2

Table of Contents

ABSTRACT 3

KEYWORDS 3

OBJECTIVE 4

INTRODUCTION 4

TEXT PARSING 6

TEXT SEARCHING 8

A. SIMPLE SEARCHING 8

B. PARTIAL SEARCHING 9

C. COMPLEX SEARCHING 11

CONCLUSION 14

REFERENCES 14

Developing powerful and efficient text searching techniques in C++

Page | 3

Abstract

Text parsing and searching are problems which programmers are always passively solving.

Most user level applications will at some point, will require at least some basic form of text

manipulation. Even if this is only a small part of the overall solution, it can often be very time

consuming and frustrating. It is often common practice to develop an ad hoc solution for every

application of use in order to save time, but creating a generic solution will always help out

more in the future. The C++ standard library has several classes which can often help with

simple functionality; however, not all of these functionalities are intuitive and can cause

ambiguity for simple problems.

Keywords

C++, String, Search, Text, Algorithm, Tokenize, Programming, Parse

Developing powerful and efficient text searching techniques in C++

Objective

This application note will cover several simple

parsing. This document will take several

searching algorithms. Not only are these algorithms simple and powerful,

they were created to solve a more general

modifications.

Introduction

First we will consider a simple C++ character array:

“This is an array.”

Now let’s see what this looks like from a

As you can see, the example is rather

array indexing if we want to modify any of the letters in our array.

remove all the whitespaces? This may require a little more work

this particular example.

We can accomplish this by constructing a new array in which every time we run into a

whitespace, we shift all the contents to the left.

be too difficult. How about matching two

the problem becomes much more complex.

both arrays and using a boolean operator to compare every index.

versatile technique. The reason for

results if the second array is slightly different.

Developing powerful and efficient text searching techniques in C++

This application note will cover several simple algorithms which deal with text searching and

take several incremental steps to achieving successful

Not only are these algorithms simple and powerful, but most importantly,

a more general problem and can be reused with minor

First we will consider a simple C++ character array:

Now let’s see what this looks like from a coding perspective:

As you can see, the example is rather simple and intuitive. It’s easy to see that we can just use

array indexing if we want to modify any of the letters in our array. What if you wanted to

This may require a little more work, but is still pretty simple

by constructing a new array in which every time we run into a

whitespace, we shift all the contents to the left. Programming a procedure to do this wouldn’t

matching two arrays or searching for a word within an array

the problem becomes much more complex. You can match two arrays by iterating through

oolean operator to compare every index. However, this is not a very

The reason for this is because this technique may produce undesirable

array is slightly different.

Developing powerful and efficient text searching techniques in C++

Page | 4

algorithms which deal with text searching and

successful text

but most importantly,

and can be reused with minor

It’s easy to see that we can just use

What if you wanted to

still pretty simple for

by constructing a new array in which every time we run into a

Programming a procedure to do this wouldn’t

for a word within an array? Now

by iterating through

However, this is not a very

this is because this technique may produce undesirable

Developing powerful and efficient text searching techniques in C++

These two arrays are similar except for one minor difference, the first element in the

array is a lower case ‘t’ and the corresponding index in the

a boolean operator on this index would return a false because the decimal representation of ‘t’

is 116 and for ‘T’ is 84. The problem becomes even more

particular word within an array.

cases where if an index matches ‘i’, then the word is found if the succeeding index matches ‘s’.

For example:

We can already see a problem with this technique.

part of another word. The algorithm would have to be modified

proceeding and succeeding indexes are whitespaces. This won’t work if the word is at the end

or the beginning of the array though.

something much more complex.

Developing powerful and efficient text searching techniques in C++

These two arrays are similar except for one minor difference, the first element in the

array is a lower case ‘t’ and the corresponding index in the first array is an upper case ‘T’. Using

oolean operator on this index would return a false because the decimal representation of ‘t’

The problem becomes even more complex if we want to search for a

particular word within an array. If you wanted to search for the word “is”, you could

cases where if an index matches ‘i’, then the word is found if the succeeding index matches ‘s’.

can already see a problem with this technique. The first result is not a word by itself. It

. The algorithm would have to be modified to also verify that the

indexes are whitespaces. This won’t work if the word is at the end

or the beginning of the array though. All these edge cases are what turn simple problems into

.

Developing powerful and efficient text searching techniques in C++

Page | 5

These two arrays are similar except for one minor difference, the first element in the second

upper case ‘T’. Using

oolean operator on this index would return a false because the decimal representation of ‘t’

complex if we want to search for a

If you wanted to search for the word “is”, you could find all the

cases where if an index matches ‘i’, then the word is found if the succeeding index matches ‘s’.

The first result is not a word by itself. It is a

to also verify that the

indexes are whitespaces. This won’t work if the word is at the end

simple problems into

Developing powerful and efficient text searching techniques in C++

Page | 6

Text Parsing

The first step in making a versatile text searching algorithm is reorganizing your data into

something that is easier to work with. From the examples in the introduction, we can see two

major obstacles involved in text searching, whitespaces and upper/lower case letters. A good

way to start would be to convert all the characters to either upper or lower case. C++ contains

some simple functions that can convert characters to upper or lower case. We can write a

simple function which iterates through a string and converts all the characters to upper or

lower case.

//Function which converts all the characters in a string to upper

case

string ConvertToUpper(string str)

{

 //Loop through the size of the string

for(int i=0;i< str.length();i++)

 {

 //If the character is not a space

 if(str[i] != ' ')

 {

//Reset the value of the array position to the new

upper case letter

 str[i] = toupper(str[i]);

 }

 }

 return str;

}

//Function which converts all the characters in a string to lower

case

string ConvertToLower(string str)

{

 //Loop through the size of the string

for(int i=0;i< str.length();i++)

 {

 //If the character is not a space

 if(str[i] != ' ')

 {

//Reset the value of the array position to the new

upper case letter

 str[i] = tolower(str[i]);

 }

 }

 return str;

}

Developing powerful and efficient text searching techniques in C++

Passing in our original string to the ConvertToLower function

The second obstacle is to eliminate issues involved with whitespaces

In the above function, we can pass in

separate out words based on the

for the delimiter and keep track of the start and ending position. It will then subtract that

section from the original string, thus giving

resulting vector will contain all of th

class which can hold user specified data types.

words. Using vectors is good in this application because a size is

vector and we won’t know ahead of time how many words will be separated out of our

string. By passing our text through both of the above algorithms, we

individual words which contain only lower case letters

//Function which parses

The results are stored

address

void GetTokens(string str,vector<string>& tokenVector, char token)

{

 //Skips the delimet

 int lastPosition = str.find_first_not_of(token, 0);

 //Find the first no

 int position = str.find_first_of(token,

 //While loop which

 while (npos != position || npos != lastPosition)

 {

 //Adds found to

tokenVector.push_back(str.substr(lastPosition, position

lastPosition));

//Finds the nex

 lastPosition = str.find_first_not_of(token, position);

//Finds the nex

 position = str.find_first_of(token, lastPosition);

 }

}

Developing powerful and efficient text searching techniques in C++

to the ConvertToLower function results in the following:

eliminate issues involved with whitespaces.

In the above function, we can pass in a string and a delimiter of choice. The function will

separate out words based on the delimiter and store them into a vector. The function will look

for the delimiter and keep track of the start and ending position. It will then subtract that

, thus giving us a single word. Once the loop has finished, the

resulting vector will contain all of the individual words. In C++, a vector is a dynamic container

class which can hold user specified data types. Basically, what we end up with is an array of

words. Using vectors is good in this application because a size is not needed to

we won’t know ahead of time how many words will be separated out of our

through both of the above algorithms, we end up with an array of

contain only lower case letters:

s out a string based on the delimeter o

 back into a vector which is passed in

GetTokens(string str,vector<string>& tokenVector, char token)

ters are the beginning of the string

int lastPosition = str.find_first_not_of(token, 0);

on delimeter

int position = str.find_first_of(token, lastPosition);

 iterates through a string to subtract

(npos != position || npos != lastPosition)

oken to the vector

tokenVector.push_back(str.substr(lastPosition, position

lastPosition));

xt delimeter

lastPosition = str.find_first_not_of(token, position);

xt non delimeter

position = str.find_first_of(token, lastPosition);

Developing powerful and efficient text searching techniques in C++

Page | 7

results in the following:

. The function will

The function will look

for the delimiter and keep track of the start and ending position. It will then subtract that

Once the loop has finished, the

In C++, a vector is a dynamic container

Basically, what we end up with is an array of

not needed to initialize a

we won’t know ahead of time how many words will be separated out of our original

end up with an array of

of choice

 by memory

GetTokens(string str,vector<string>& tokenVector, char token)

 tokens

tokenVector.push_back(str.substr(lastPosition, position -

lastPosition = str.find_first_not_of(token, position);

Developing powerful and efficient text searching techniques in C++

Text Searching

A. Simple Searching

Now that the data has been cleaned up, we can

matches. If we were to run both the string to search and the

algorithms, we could simply loop through the

match.

//Search text for a simple match

Vector<string> results;

void simpleSearch(string str, vector<string>& tokenVector)

{

 //Loop throug

for (int i = 0; i < tokenVector.size(); i++)

 {

//Does

check f

 if(str =

 {

//

d

 r

 }

 }

}

Developing powerful and efficient text searching techniques in C++

Now that the data has been cleaned up, we can focus on searching the text and finding

If we were to run both the string to search and the original text into the two par

loop through the resulting word vector to see if any of the arrays

text for a simple match and store results in a vector

Vector<string> results;

Search(string str, vector<string>& tokenVector)

gh the tokenized vector and check for ma

i = 0; i < tokenVector.size(); i++)

 a boolean operatation between two array

for a match

str == tokenVector[i])

//If a match is found, push the result i

different vector

results.push_back(tokenVector[i]);

Developing powerful and efficient text searching techniques in C++

Page | 8

searching the text and finding

original text into the two parsing

word vector to see if any of the arrays

a vector

Search(string str, vector<string>& tokenVector)

atches

ys to

into a

Developing powerful and efficient text searching techniques in C++

This is an example of the simple searching algorithm being used in a GUI

the picture that searching for “THIS” still resulted in a success.

for a much more desirable result.

B. Partial Searching

//Search text for a partial match and store results in a vector

Vector<string> results;

void partialSearch(string str

{

 //Loop through the

for (int i = 0; i < tokenVector.size(); i++)

 {

//This uses t

search string

const char *ptr = strstr (tokenVector[i].c_str(),str.c_str());

//A match is

function is n

 if(ptr != NULL)

 {

//If a

vector

 results.push_back(tokenVector[i]);

 }

 }

}

Developing powerful and efficient text searching techniques in C++

simple searching algorithm being used in a GUI application

searching for “THIS” still resulted in a success. The parsing algorithms allowed

for a much more desirable result.

//Search text for a partial match and store results in a vector

partialSearch(string str, vector<string>& tokenVector)

 tokenized vector and check for matches

i = 0; i < tokenVector.size(); i++)

the strstr function to find if an occura

g has occurred in the vector element

*ptr = strstr (tokenVector[i].c_str(),str.c_str());

 found if the pointer returned by the st

not NULL

(ptr != NULL)

 match is found, push the result into a

esults.push_back(tokenVector[i]);

Developing powerful and efficient text searching techniques in C++

Page | 9

application. Notice in

The parsing algorithms allowed

ance of our

*ptr = strstr (tokenVector[i].c_str(),str.c_str());

trstr

 different

Developing powerful and efficient text searching techniques in C++

The simple searching technique

accomplish this, we can actually just make a minor adjustment.

This function above will loop through our vector of words. For every word in the vector, the

strstr function is used which will return a pointer to the first occurrence of

another. If no result is found, the function will return a null pointer.

effective way to find partial matches.

Searching for the word “is” would achieve two results in the above vector.

While the pointer returns the actual index in which the match is found, for partial matches, we

actually don’t care about the index

or not. This is enough to tell us if the string is a part of

Developing powerful and efficient text searching techniques in C++

 works well, but it will not return partial matches.

can actually just make a minor adjustment.

loop through our vector of words. For every word in the vector, the

sed which will return a pointer to the first occurrence of one string in

another. If no result is found, the function will return a null pointer. This is a very simp

partial matches.

would achieve two results in the above vector.

While the pointer returns the actual index in which the match is found, for partial matches, we

index position. We just simply need to know if the pointer is NULL

or not. This is enough to tell us if the string is a part of a word or not.

Developing powerful and efficient text searching techniques in C++

Page | 10

will not return partial matches. In order to

loop through our vector of words. For every word in the vector, the

one string in

This is a very simple, but

While the pointer returns the actual index in which the match is found, for partial matches, we

the pointer is NULL

Developing powerful and efficient text searching techniques in C++

C. Complex Searching

The next step in searching would be

are several approaches that can be taken to accomplish this.

a search spans across two words, we must keep

differentiate between a single and a multi word search.

function to retrieve a pointer to the first occurrence of

found, we need to subtract all the complete words that matched the search string

this by starting at the pointer index plus the size of the search string. We then iterate through

the array until a space is found. Once this is done,

word list to see if we have an ordered match with the search string.

Developing powerful and efficient text searching techniques in C++

Partial text searching in action:

would be to allow for results that span across multiple words.

are several approaches that can be taken to accomplish this. The general idea for thi

a search spans across two words, we must keep track whitespaces because that will allow us to

differentiate between a single and a multi word search. As before, we can use the

function to retrieve a pointer to the first occurrence of our search string. Once that instance is

subtract all the complete words that matched the search string

this by starting at the pointer index plus the size of the search string. We then iterate through

e is found. Once this is done, we can simply iterate through the original

word list to see if we have an ordered match with the search string.

Developing powerful and efficient text searching techniques in C++

Page | 11

multiple words. There

The general idea for this is that if

whitespaces because that will allow us to

As before, we can use the strstr

Once that instance is

subtract all the complete words that matched the search string. We can do

this by starting at the pointer index plus the size of the search string. We then iterate through

we can simply iterate through the original

Developing powerful and efficient text searching techniques in C++

Page | 12

//Complex searching algorithm to handle multi word searches

void complexSearch(string temp)

{

//This uses the strstr function to find if an occurance of our search string has occurred in the

original string

 const char *ptr = strstr(originalNotes.c_str(), temp.c_str());

//A match is found if the pointer returned by the strstr function is not NULL

 if(ptr != NULL)

 {

//Create a new string by using strdup to duplicate the string starting at the position an

occurance was found

 string str = strdup(ptr);

 string searchString = temp;

 int start = 0;

 string final;

 bool finished = false;

//Round up the last word by finding the next whitespace

while(start < searchString.size()-1 || finished == false && start<str.size())

 {

 //Make sure we don’t go out of bounds while itterating the string

 if(start > searchString.size()-1)

 {

//If we find anything, but a space, add the character to our last word

 if(str[start] != ' ')

 {

//Add the character to the final word and increase the position

 final = final + str[start];

 start++;

 }

 //If a space was found, it means that the word has been rounded up

 else

 {

 //Set a boolean so our loop will break

 finished = true;

 }

 }

//This is an edge case for if the word to be rounded is the last word in the original

string

 else

 {

//Add the character to the final word and increase the position

 final = final + str[start];

 start++;

 }

 }

 //Inilize a vector to store tokenized strings into

 vector<string> tokens;

 //Call the tokenizing function and separate the words by space

 GetTokens(final, tokens, ‘ ‘);

 int foundPosition;

 //Look for the occurance of the first search word in vector of original words

 for (int j = 0; j < formattedText.size(); j++)

 {

const char *ptr = strstr(formattedText[j].c_str(), tokens[0].c_str());

 //Found an occurance

 if(ptr != NULL)

 {

//If we find a match, we need to start at that position and see if the next

words in the search vector match the corresponding order of words in the

original word vector

 foundPosition = j;

 int count = 0;

 //Loop through the vector of tokens

 for (int i = 0; i < tokens.size(); i++)

 {

 //If the arrays don’t match, then break from the loop

 if(tokens[i] != formattedText[foundPosition])

 {

 break;

 }

 foundPosition++;

 count++;

 }

//If all occurance of the search string occurred in correct order, then we are

done

 if(count == tokens.size())

 {

 searchResults.push_back(final);

 }

 }

 }

 }

}

Developing powerful and efficient text searching techniques in C++

Complex text searching in action:

In the above example, we searched for “an ar”

find the first instance of that string.

whitespace and subtracted “an array” from the original text. The new string was then

tokenized to form a two word vector which was then compared to the original vector to

a result.

Developing powerful and efficient text searching techniques in C++

Complex text searching in action:

we searched for “an ar”; the complex searching algorithm was able to

find the first instance of that string. The function than kept iterating until it reached a

acted “an array” from the original text. The new string was then

tokenized to form a two word vector which was then compared to the original vector to

Developing powerful and efficient text searching techniques in C++

Page | 13

the complex searching algorithm was able to

The function than kept iterating until it reached a

acted “an array” from the original text. The new string was then

tokenized to form a two word vector which was then compared to the original vector to obtain

Developing powerful and efficient text searching techniques in C++

Page | 14

Conclusion

Text searching can turn into a very complex problem and if not programmed properly, can be

very time consuming to implement and test. By implementing the solution in small iterative

steps, such as those discussed earlier, a versatile searching algorithm can be quickly made for

any specific application.

References

STRSTR Reference

http://www.cplusplus.com/reference/clibrary/cstring/strstr/

Nyhoff, Lary. ADT’s, Data Structures, and Problem Solving with C++.

 Prentice Hall, 2005.

C++ Standard Library: The string Class

http://pages.cs.wisc.edu/~hasti/cs368/CppTutorial/NOTES/STRING.html

