
Creating a Python Interface to the

Powercast P2110-EVAL-01

Development Kit

David Rogers

11/7/13

Abstract: This application note describes an alternative way to read data from the Microchip 16-bit XLP

Development Board contained in Powercast P2210-EVAL-01 sensor network development kit. This

alternative way uses the flexible programming language, Python, which allows for the rapid development

of a rich user-friendly application built on top of the data being collected.

2

Introduction
A USB connection is a the typical way most electronic suppliers provide in order to directly

interface with hardware. However, these suppliers only provide very simplistic manuals on how

to read data from the hardware onto a computer via USB. The Powercast P2110-EVAL-01

manual
1
 shows a way to connect to the Microchip 16-bit XLP Development Board using the

terminal emulator application HyperTerminal.
2
 This development board is a cluster head which

receives all of the data from each of the sensor nodes in the network. Some sample data from the

development board with network comprised of a single sensor node is shown below in Figure 1.

Figure 1. Sample data collected from the Microchip 16-bit XLP Development Board via USB using HyperTerminal.

This data stream is very hard to read and understand. As network complexity accumulates by

adding additional sensor nodes it is very hard to grasp what is going on in the sensor network.

Therefore there is substantial need for a robust application in order to sort and filter the data as

necessary. A larger and more visual appealing view of the data can help human operators

understand what is going in the network and act accordingly if there is something wrong in the

environment being monitored or the network itself. A Python interface will provide the basis for

the development of a feature-rich application. Python is easy to set-up and learn and has a strong

development community for help and support.

1 See http://www.powercastco.com/PDF/P2110-EVAL-01-manual.pdf for further details.
2 See http://www.powercastco.com/zip/HyperTerminal.zip in order to download.

http://www.powercastco.com/PDF/P2110-EVAL-01-manual.pdf
http://www.powercastco.com/zip/HyperTerminal.zip

3

Configuring Hardware and Installing Drivers
Before writing Python code a few things must be done first. The Microchip 16-bit XLP

Development Board must be configured correctly and the corresponding USB-to-Serial driver

files must be installed on your machine in order to communicate via USB properly. An in-depth

overview of these steps is described in the Powercast P2110-EVAL-01 manual.
3
 Please complete

steps two and three in the manual before continuing on.

What is Python?
From the Python programming language official website:

4

Python is a programming language that lets you work more quickly and integrate

your systems more effectively. You can learn to use Python and see almost

immediate gains in productivity and lower maintenance costs.

Python is available on just about any platform and is an extremely flexible interpreted language.

There is a strong development community surrounding Python and this tutorial will illustrate a

few modules developed by independent developers in order to interface with the development

board and create a feature-rich application.

Installing Python
This tutorial uses Python 2.7.x with the current latest stable release being 2.7.5. Please download

and install the correct version for your system on the downloads page.
5
 Be sure to download

version 2.7.x and not the 3.3.x version of Python. Once downloaded follow the installation

directions and install Python on your system.

If correctly installed on Windows one should simply be able launch a command prompt window

and type python. This launches the Python interpreter. The output should be very similar to

Figure 2. If an error occurs be sure to check that Python has been correctly added to your

system's PATH environment variable.

Figure 2. Showing how to access Python via command line.

3 See http://www.powercastco.com/PDF/P2110-EVAL-01-manual.pdf steps two and three.
4 See http://www.python.org/.
5 Visit http://www.python.org/download/ to download Python 2.7.x

http://www.powercastco.com/PDF/P2110-EVAL-01-manual.pdf
http://www.python.org/
http://www.python.org/download/

4

Installing pySerial
In order to communicate over a serial USB connection in Python an additional module is needed.

This module is called pySerial.
6
 Once again, this module needs to be downloaded and installed.

7

Visit the download page and be sure to download the correct version for your systems platform.

PySerial only offers a 32-bit installer for Windows and therefore if your system is of 64-bit

architecture you must download the source and install via the command line. If you are confused

on how to install pySerial for 64-bit check out this thread
8
 on Stack Overflow for help.

Identifying the Correct USB Port
If the Microchip 16-bit XLP Development Board is not currently connected to your machine

please connect it to an available USB port. Open up Device Manager on your machine and

identify the port at which the development board is connected. If you are having trouble locating

the development board take a look at Figure 3 below. It should be found under the Ports (COM

& LPT) heading. If the connection is not found please reinstall the drivers from the Powercast

manual. Once found, please note the port at which the development board is connected.

Figure 3. A screen capture of the Device Manager interface with the development board connected to the computer.

The connection is on port 'COM3'.

6 Documentation for pySerial can be found at: http://pyserial.sourceforge.net/
7 Download pySerial here: https://pypi.python.org/pypi/pyserial
8 Help on installing pySerial for 64-bit machines can be found at:

http://stackoverflow.com/questions/8491111/pyserial-for-python-2-7-2

http://pyserial.sourceforge.net/
https://pypi.python.org/pypi/pyserial
http://stackoverflow.com/questions/8491111/pyserial-for-python-2-7-2

5

Writing Simple Python Code
The last step is to write some simple Python code in order to interface with the development

board. Figure 4 contains a few lines of sample code that will read the first 10000 bytes from the

development board. In

order to run this code

simply copy it into a file

with a '.py' extension and

double click on it, but be

sure to remove the line

numbers and that the

development board is

connected properly.

Looking further into the

code Line 1 loads the

pySerial library

downloaded earlier into

the namespace for use in

the program. Line 3 sets-up the serial connection with the development board via USB. This is

accomplished by using calling the Serial method from the pySerial library. The arguments in the

expression consist of the port at which the development board is connected ('COM3' for my

machine) , and the baud rate. The baud rate is hardware specific and is listed as 19200 as

indicated in the Powercast manual.
9
 There are additional arguments that can be ignored because

they are all set to the default values. For more information on the pySerial library check out the

API on their website.
10

 Line 4 simply declares a blank string called 'packet'. This will be used to

capture one packet at a time and then print it out to the console. Next, Line 6 initializes a for

loop in order to count from 0 to 10000. This will allow the first 10000 bytes (in this case

characters) to be read and then exit the loop. This could be changed to a while loop in order to

have the program run indefinitely. In Line 7 one byte is read from the connection data stream and

stored in the variable 'data'. Line 8 checks if the byte in 'data' is the capital letter 'P'. This is a

simple way to check whether or not a new packet has begun. As shown in Figure 1 every packet

has the same fields beginning with 'Packet #' and there is only one 'P' in the packet. Thus, it is

safe, but not a best practice, to simply check for the character 'P' every time through the loop. If

the condition is true then in Line 9 the packet contents are printed and the packet is reset to the

letter 'P' (from the variable 'data') in Line 10. If the condition is false since 'data' does not equal

'P' then the else clause is triggered in line 11. Line 12 simply concatenates the next byte

contained in 'data' to 'packet'. Finally, in Line 14 the connection to the port is closed. The outputs

to this program are the same as the outputs in Figure 1 except now they are being read and

outputted using Python. Figure 5 on the next page shows the output of the sample code in a

command line interface. While this may not seem useful as it is the same functionality achieved

using HyperTerminal, by reading in the data using Python a full-scale application can now be

built on top.

9 See http://www.powercastco.com/PDF/P2110-EVAL-01-manual.pdf step 4.4.
10See http://pyserial.sourceforge.net/pyserial_api.html for more information on the pySerial library.

01 import serial

02

03 connection = serial.Serial('COM3', baudrate=19200)

04 packet = ''

05

06 for i in range(0, 10000):

07 data = connection.read()

08 if (data == 'P'):

09 print packet

10 packet = data

11 else:

12 packet += data

13

14 connection.close()

Figure 4. Sample Python code for printing the first 10,000 bytes received.

http://www.powercastco.com/PDF/P2110-EVAL-01-manual.pdf
http://pyserial.sourceforge.net/pyserial_api.html

6

Figure 5. Command Line output of the data through a Python program.

Extending Python Functionality
Now that data can be read into a Python program successfully, a feature-rich application can be

developed. The modules matplotlib
11

 and wxPython
12

 are two great modules for graphing and

developing a graphical user interface respectively. When used in combination an application can

be built to visualize the data obtained from the development board in real-time as well as view

and sort through past data. This will allow an operator properly identify problems within the

network and in the environment the network is monitoring.

Conclusion
This application note covered how to set-up and install the necessary modules to read data from

the Microchip 16-bit XLP Development Board using Python 2.7. By using Python instead of

HyperTerminal a full-scale application can be developed to better understand what is going on in

the network. The development of this application is beyond the scope of this document but a few

libraries such as matplotlib and wxPython are well developed and can be useful for further

development. This document provided some sample code in order to help a user understand

some Python syntax and set-up a serial connection to the development board. Overall, this note

provides a great alternative to using the HyperTerminal interface provided by the Powercast

manual.

11 See http://matplotlib.org/
12 See http://www.wxpython.org/

http://matplotlib.org/
http://www.wxpython.org/

