
Figure 1: Configuration window of the SPI block

E L E M E N T A R Y U S A G E O F T H E S E R I A L
P E R I P H E R A L I N T E R F A C E C O M P O N E N T

F O R P S O C C R E A T O R

Nathan Ward
November 11, 2011
Design Team 1

ABSTRACT

 This application note goes over a primary component of the Programmable System on Chip
(PSoC) communication library, the Serial Peripheral Interface (SPI) component. The note will first discuss
various aspects and properties of the SPI block itself, and then demonstrate how the SPI block can be used
in a basic application for the communication between two PSoC SPI blocks. The goal of this application
note is to provide a simple framework from which a developer or first time user of PSoC can quickly
understand and be able to use the SPI block within PSoC.

 Keywords: SPI, PSoC, Schematic Editor, MOSI, MISO, Component Catalog

BACKGROUND

 The PSoC platform contains various configurable "blocks" which act as virtual electronic
components. This capability makes PSoC an adaptable and powerful platform for a variety of applications.
The blocks that can be utilized within PSoC
Creator are diverse, ranging from digital blocks
which can perform boolean logic or perform tasks
such as multiplexing lines dynamically created by
the user within PSoC Creator's Schematic Editor
to analog capabilities such as digital-to-analog
conversion and amplification of waveforms.
However, beyond these digital and analog
capabilities, there are blocks which are designed
to make PSoC compatible with various
communication protocols, one such block allows
the platform to interface with external hardware
via SPI.

 Blocks placed within the Schematic Editor
can be modified in their behavior via their user
interface, this functionality allows the developer
to edit the properties of the successive blocks
without having to change the various low-level

Figure 2: Advanced tab of the SPI block

hardware libraries which characterize these virtual components. The SPI follows this trend and allows the
user to modify how data is being transmitted through its individual user interface rather than through
software coding, though this is also an option should the user choose to go this route. In Figure 1 we see
some basic settings of the SPI which can be modified, namely the mode, data lines, data bits, shift
direction, and bit rate. In mode, we set the CPHA and CPOL parameters of the signal which are listed, along
with their respective effects, in Table 1. In the data lines parameter, we set whether we want the SPI to
have two lines which are set to input and output, MISO and MOSI, or if we want a bidirectional port. Data
bits specifies the bit-width of a single transfer which can be set from 3 bits to 16 bits. Shift direction
specifies whether the data goes in with the most significant bit first or the least significant bit first, and the
bit rate sets the clock speed. These are the basic settings which can be adjusted, however, there are many
more aspects of the SPI which can be tweaked to suit a particular application.

Table 1:

Mode CPHA CPOL Description
0 0 0 Clock base value zero. Data captured on rising edge, propagated on falling edge.
1 0 1 Clock base value zero. Data captured on falling edge, propagated on rising edge.
2 1 0 Clock base value one. Data captured on falling edge, propagated on rising edge.
3 1 1 Clock base value one. Data captured on rising edge, propagated on falling edge.

 Under the advanced tab, the user can specify many more properties of the SPI block (Figure 2),
which can be broken up into three categories: clock selection, buffer size, and interrupts. Clock selection
determines whether the clock is integrated with the SPI block or if it is coming from an external source. In
the example shown later in this paper, the clock signal is coming from an external timing block; since an
external source is used, the bit rate setting as mentioned previously will not actually set the clock speed
but rather will automatically divide the frequency of the incoming clock signal by two. The buffer size sets
the number of bytes stored in the RX and
TX buffer, which can be between four and
255, setting the buffer less than that will
cause an error message to display. The
third category in the advanced tab is the
enabling of interrupts on certain events.

 The interrupts will be sent out of
the SPI block via the RX or TX interrupt
output lines which can activate either
custom or predefined interrupt service
routines laid out in the Schematic Editor.
Setting the RX or TX buffer above 4 bytes
has certain effects on the interrupts,
namely causing the "FIFO NOT EMPTY"
interrupt to be permanently enabled to
prevent incorrect buffer functionality.
Users which require the use of interrupts
or SPI functionality beyond the scope of
this paper are encouraged to consult the
SPI component data sheet provided by
Cypress Semiconductor through double
clicking on the SPI block and then pressing

Figure 3: Configuration window of the clock block

the “Data Sheet” button.

SPI EXAMPLE

 In this example, two SPIs are being used to demonstrate both the functionality of the master and
the slave SPI blocks. This example shows a virtual hardware configuration not typical of most PSoC
projects. Whereas most of the time the PSoC is used as a component in a greater system, this
demonstration will have the components be all internal to the PSOC without any input or output pins.
However, this functionality is easily added
through the "ports and pins" folder within the
Component Catalog menu.

 To start this example, open up PSOC
creator and create a new project. Once a new
project has been generated, we can start laying
down the blocks which make up the virtual
hardware of our project. Open up the Schematic
Editor for the project and also find the
Component Catalog. The Component Catalog
contains all of the blocks we will need for our
project, namely the SPI slave and master blocks.
Under the Component Catalog, search under the
communication subfolder, and then under the
SPI subfolder, this is where the SPI components
will be. In this project we will be using SPI
Master Block and the SPI Slave Block. Click and
drag these components onto the Schematic
Editor and place them an adequate distance
apart; at this point, we now only need a couple of other virtual components before moving onto the
software portion of this tutorial.

 For this example, we will be using an external clock source. For many applications it is advisable to
use an external clock source so that the design is as modular as possible, this also allows simpler
integration of the SPI clock signal with other components. Find the system subfolder in the Component
Catalog and drag two clock blocks onto the Schematic Editor, one will be for the SPI Master block and the
other will be for the SPI Slave block. Although this step is not necessary, the clock speed can be adjusted to
suit this application. Because there is not a high throughput of data being transceived by the SPI blocks, I
set the clock speed to 8 KHz. This can be done by double clicking the clock blocks and then specifying the
frequency (Figure 3).

The last component we will need is a source for the reset which grounds the virtual pin. Look
under digital/logic subfolder and take out two logic low components, place these components next to the
reset pin for the SPI Master and SPI Slave. Now, the final step for us to complete in the Schematic Editor is
placing virtual traces to connect all of our components. First click the button labeled “Wire Tool” on the
left hand corner of the schematic editor and then apply the wires to the schematic, connecting the clock
and reset pins to their respective components, and also connecting the SPI blocks together in the manner
shown in Section A of the Appendix. Once this task has been completed, press F5 or alternatively click

Debug under the Debug menu. This will compile our code and then upload our design to the PSoC, our
code won’t do anything for now, but with this step we have verified our code is bug free and also
generated the source and header files associated with each component.

For now, let’s take a look at the source file SPIM_1.c under Generated Source/SPIM_1 which
contains the functions of the SPI we will be calling to in this project, namely the SPIM_1_Start and
SPIM_1_WriteTxData. SPIM_1_Start is really just a combination of two other functions within this source
file, the initialize function and the enable function, which simplifies getting our module running.
SPIM_1_WriteTxData will output an 8-bit unsigned integer out of the MOSI to be read by our SPI Slave
device. The complementary code to read this signal is in the SPIS_1.c source file under the Generated
Source/SPIS_1 subfolder, specifically the function SPIS_1_ReadRxData.

RUNNING THE APPLICATION

 To actually make use of the code from the generated source and header files, first open Source

Files/main.c. Make changes to the code according to the source listed below, once this is done, place a

break point on the “SPIM_1_WriteTxData(5);” line and the closing bracket of main. Set the code to debug

again and continue to parse the code until the first breakpoint. From here open up the locals tab on the
bottom window of PSoC Creator, we can observe from this that our variable is still set to the value we
initialized it to. Resume debugging (F5 or the “play” button in the toolbar) and observe that our local
variable has changed to the value we read from the SPI Slave, the project is now working. Although this
data is not doing anything objectively useful at the moment, in more advanced applications, the variable
could be used for more complex purposes.

CONCLUSION

 In this application note, various properties of the SPI components were discussed. With the simple
project demonstrated here, first-time users of PSoC can get projects involving the SPI communication
protocol off the ground, and gain exposure to the communications module of PSoC. Additionally, this
example can serve as a foundation for projects which utilize the full complexity and capability of the PSoC
platform.

APPENDIX

SECTION A: SCHEMATIC EDITOR VIEW

SECTION B: MAIN.C

/* ==

 *

 * Copyright Michigan State University, 2011

 * All Rights Reserved

 * UNPUBLISHED, LICENSED SOFTWARE.

 *

 * CONFIDENTIAL AND PROPRIETARY INFORMATION

 * WHICH IS THE PROPERTY OF Michigan State University.

 *

 * ==

*/

#include <device.h>

#include <SPIM_1.h>

#include <SPIS_1.h>

void main()

{

 uint8 reader = 0;

 SPIM_1_Start();

 SPIS_1_Start();

 SPIM_1_WriteTxData(5); // place breakpoint here...

 reader = SPIS_1_ReadRxData();

} // ...and here

/* [] END OF FILE */

