
PSoC Hardware Control Versus Software Control

Aaron Thompson

November 10, 2011

Design Team 1

Executive Summery:
The Programmable System on a Chip or PSoC is a flexible platform that allows multiple

components to be incorporated into a design without the need for external hardware. The

virtual components can be configured as hardware enabled, software enabled or a mix of

both. For this application note we will detail characteristics of a hardware controller

counter and a software controlled time in PSoC Creator. The purpose of a counter is to be

able to count to a maximum number and reset to the beginning similar to a clock divider.

A timer can be used to measure the time elapsed between two events and trigger an

interrupt signal similar to a timeout interrupt. This application note will cover building an

8-bit counter and an 8-bit timer with file and implementation functions that are pre-

defined when you drag a virtual component onto the schematic. The similarities for both

control methods require hardware connections to clock, input and output port as well

initialization and starting function calls on the software side.

Keywords
PSoC, software, hardware, control, timer, counter, interrupt, schematic, C code

Introduction
The Programmable System on a Chip or PSoC is a flexible platform that allows multiple

components to be incorporated into a design without the need for external hardware.

These virtual hardware components include but are not limited to the use of timers,

amplifiers, resistors and capacitors. To add even more flexibility to the PSoC Creator

software individual components can be configured on a schematic layout similar to

LabView or using C programming language. The description PSoC Creator uses to

differentiate between the two configurations is hardware enable and software enabled.

The option between software versus hardware enabled components is set in its options

menus. Not all characteristics for a virtual component have the option of being hardware

versus software enabled. Using a virtual counter components signals such as reset and the

main clock have to be triggered by hardware. For this application note we will detail

characteristics of a hardware controller counter and a software controller timer. Each is

built using virtual components of PSoC Creator. Below are images of these virtual

components, on the Figure 1, for reference, is a counter that is software enabled. Figure 2

is a counter that is exclusively hardware enabled. Figure 3 is a timer that will be used to

demonstrate the software controlling in PSoC Creator.

Figure 1 Figure 2 Figure 3

Objective
The purpose of a counter is to be able to count to a maximum number and reset to the

beginning similar to a clock divider. A timer can be used to measure the timer elapsed

between two events and trigger an interrupt signal similar to a timeout interrupt. With the

appropriate circuit either can be implemented but for the purpose of this application note

we will focus on how either can be configured for us in the circuit. We will implement

the clock divider using hardware control and the timeout interrupt using software control

methods.

Walkthrough
Building an 8-bit counter and an 8-bit timer will require the same initial schematic setup

we will then divide into the individual application. Dragging a counter, seen in Figure 4,

from the Component Catalog on the left side of the PSoC Creator window we will have

to connect the reset pin to ‘0’ to ensure the counter continues to run and the clock pin to

the BUS_CLK which can also be found in the Component Catalog. The timer will also

require these initial steps. For the purpose of customization we will use a UDB Counter,

this can be done by double clicking the counter on the schematic and clicking the radio

button labeled UDB. At this point we will have to differentiate between the timer and the

counter. Another clock signal should be used for the count port on the counter. For a

clock divider we should input a clock signal of a lower frequency then the main bus

clock, 1KHz will work.

Hardware control setting for the clock divider will require more configurations on the

schematic, to do so double click on the counter as before. In the Configure tab change the

number in “Compare Value” to “10” and ensure “Clock Mode” is set to “Up Counter”. In

the Advanced tab change “Capture Mode” to “Rising Edge” and “Enable Mode” to

“Hardware Only”, the other defaults are fine. Back on the schematic you can connect a

‘1’ the enable port to ensure that the counter is always on, a port can also be connected to

enable in order to control if the counter is on or off from an outside source. The same

clock connected to count can be branched to capture and you can connect an output port

or another virtual component to the comp port which will be trigger at ten times slower

than the speed of the bus clock. To initialize the clock and have a full functional clock

divider in you main.c file you must call Counter_Init(), Counter_ClearFIFO(),

Counter_Start(). All the functions are automatically generated in files built when you

dragger the Counter onto the schematic.

Figure 4 Schematic

Figure 5 Configure Tab

Figure 6 Advanced Tab

Figure 7 main.c
void main()
{
 Counter_1_Init();
 Counter_1_ClearFIFO();
 Counter_1_Start();
}

Software control, by definition, is more code intensive but still requires some hardware

configuration. Once you have selected a timer from the Component Catalog connect the

reset port to ‘0’, clock to BUS_CLK and an output port or another virtual component to

the interrupt pin. These setting will ensure that the timer run uninterrupted. In order to

use the hardware control for the timer a 1 KHz clock can be connected to capture. This

would provide an error range of +/- 1msec of the specific time we will required for

activity to begin. Next double click on the timer to access the configuration menu; under

“Implementation” click the radio button labeled “UDB” so we can have full access to the

timer controls. Under “Capture Mode” select “Software Controller” and check the box

labels “Enable Capture Counter”. Under “Enable Mode” select “Software Only” and

under “Interrupts” select the check box labeled “On Capture” and set the value to ‘1’ so

that the timer triggers an interrupt on the first capture function call.

PSoC with its simplicity in design creates all files and functions needed to control the

timer via software. Not covered in this application note but available for viewing when

creating a project are the Timer.c, Timer.h and Timer_PM.c files which contain all

function definitions and variables used to control the timer. Characteristics for the timer

can be found using its data sheet, if the timer is selected in the Component Catalog a link

will be at the bottom of the window. In main.c you have to first set all variable and

initialize the timer. Call functions Timer_Init(), Timer_Enable() to initialize and enable

the Timer for use. The function

Time_SetInterruptMode(Timer_InterruptOnCaptureCount) must be called to specify that

interrupt will occur when the count value is captured. The function

Timer_SetCaptureMode(Timer_SoftwareCaptureMode) let the program know to look for

a software capture instead of a hardware signal. The next step is to set the max count we

want to count up using the function Timer_SetCaptureCount(100000000). This together

with the 24 MHz BUS_CLK will ensure that the timer does not run longer than one

minute without any activity, more specifically 41.6 seconds. See Figure 7 for code

showing how to check if the timeout condition has been satisfied.

Figure 8 Schematic

Figure 9 Configuration

Figure 10 main.c
void main()
{
 Timer_1_Init();
 Timer_1_Enable();
 Timer_1_SetInterruptMode(Timer_1_InterruptOnCaptureCount);
 Timer_1_SetCaptureMode(Timer_1_SoftwareCaptureMode);
 Timer_1_SetCaptureCount(100000000);
 Timer_1_ClearFIFO(); //Clear memory
 Timer_1_Start(); //Start timer
 Timer_1_SetInterruptCount(0); //Interrupt when a capture occurs
 While(Timer_1_ReadCounter() != Timer_1_ReadCaptureCount()){
 //IF some condition is met reset counter
 // Timer_WriteCounter(0)
 }
 Timer_1_ReadCapture(); //Capture count
}

Depending on what ports or other virtual components are used to trigger the reset signal

the interrupt will trigger after it has run for 42 seconds without any activity. It is left to

the user to include error checking and handling of the interrupt.

Results
A port signal can be substituted in to the main.c’s code if statement for the timer and we

will have a fully functional interrupt timer that will run for 42 seconds without any

activity. In the final design the trigger will have to be called every 42 second or the

program will enter a different state or terminate. The counter can be used as a trigger that

will keep the timer running because the counter will be able to trigger the timer every 416

nsec. Increasing the count in the counter to 1 million will adjust the count trigger to every

41.6 msec.

Summary
Hardware versus software control only refers to how each virtual component

characteristics are set, including period and max count. The similarities for both control

methods require hardware connections to clock input and output port as well as

initialization and stating function calls on the software side. PSoC Creator makes it easy

to implement each method, leaving the user to decide where they want to focus their

energy most, on the design of a good circuit.

