Team 2
Solar Kiosk Project

Sponsored by:

Team Members:
Jakub Mazur - Manager
Eric Tarkleson – Presentation/Lab
Josh Wong - Webmaster
Ben Kershner – Document Preparation
Current Sensing

- Applications
- Pros Cons
- The Hall Effect
- Shunt Resistors
- Making your Data useful
- Questions
Applications

• Measuring Power Consumption
• Design for Safety
 – GFCIs, fuses, circuit breakers
• Temperature optimization
 – High current = hotter components
<table>
<thead>
<tr>
<th>Shunt Resistor</th>
<th>Hall Effect Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Low failure probability</td>
<td>- Isolated from current source</td>
</tr>
<tr>
<td>- Cheap</td>
<td>- Higher precision</td>
</tr>
<tr>
<td>- Wastes power</td>
<td>- More expensive</td>
</tr>
<tr>
<td>- Limited sensing range</td>
<td>- Can be integrated into an IC device</td>
</tr>
<tr>
<td>- Requires additional voltage</td>
<td></td>
</tr>
<tr>
<td>measurements</td>
<td></td>
</tr>
</tbody>
</table>
Who is this Guy?

André-Marie Ampère (1775 –1836)

By 1800 scientists were wondering if electricity and magnetism were related. Ampère was one of the first to develop a technique for measuring electricity… essentially a compass with wire wrapped around it.

Electrodynamics → Electromagnetics, where studied at this time by: Faraday, Weber Thomson and Maxwell.
Shunt Resistor

\[V = IR \]
The Hall Effect

- When there is a Magnetic field in the presence of a conductor a voltage is induced due to electron and hole drift
- Electron – negative charge carrier
- Hole – positive charge carrier
\[F = q(E + v \times B) \]

Hall Effect

\[q = +q \] for holes
\[= -q \] for electrons

\[F = qE \]
The Hall Effect - Math

- $V_{hall} = \frac{-I \cdot B}{d \cdot n \cdot e}$
- $R_{hall} = \frac{-1}{n \cdot e}$
- $I = \text{current}$
- $B = \text{Mag Flux Dens}$
- $d = \text{depth of plate}$
- $e = \text{electric charge}$
- $j = \text{current density}$
- $n = \text{charge carrier dens}$
- $r = \text{distance to center of wire}$
- $U_0 = 4 \cdot \pi \cdot 10^{-7}$

current through wire

$B_{field} = \frac{U_0 \cdot I_p}{(2 \cdot \pi \cdot r)}$

of wire
So what?

• We can use this to our advantage
• We can detect
 – B field
 – Current
 – Voltage
 – Charge drift velocity
• We can do this without having inline components (like a shunt resistor)
How do I handle this data?

• Many types of signals
 – Reference voltage (LEM sensors)
 – Voltage drop (Shunt resistor)
 – Parallel bus (Some ADCs)
 – Serial interface (Some ADCs, other ICs)
 • Traditional Serial Interface
 • I²C Bus
How do I handle this data?

• Sampling by digital ICs
 – Direct
 – Indirect
 • Intermediate ADC
• Direct
 – Built-in ADC on the PIC
 • Inaccuracies
 – Parallel
 • High Pin Count
Serial Buses

• Traditional UART/USART Serial
 – Typically one-to-one communication
 – Parity checking

• Serial Protocols
 – \(\text{I}^2\text{C} \)
 • Developed by Philips
 • 128 Devices on one bus
 – USB
 • Driver implementation