Medical Instrument Electrical Safety

- Significance of safety
 - 10s of thousands device related patient injuries in U.S every year.
 - Even a single harmful event can lead to significant damage in terms of reputation and legal action.
 - Different level of protection required as compared to household equipment.

Physiological Effects of Electricity

- Physical effect vs. current level
 - Experiments from 160lb human with 60Hz current

![Diagram of human body with various electrical effects and thresholds]
Susceptibility Parameters

- **Mean “threshold of perception”**
 - 1.1 mA for men
 - 0.7 mA for women
- **Minimum threshold of perception**
 - 500 µA
 - 80 µA with gel electrodes (reduces skin impedance)

- **Mean “let-go current”**

 - let-go current = max current where you can still release your grip
 - 16.5 mA for men
 - 10.5 mA for women
- **Let-go current vs. frequency**
 - Minimal let-go current occurs at commercial power-line frequencies of 50-60 Hz

Susceptibility Factors

- **Shock (stimulation) duration**
 - Fibrillation current is inversely proportional to the shock pulse duration
 - longer pulses → lower current does damage

- **Body weight**
 - Fibrillation current increases with body weight
 - 50 mA RMS for 6 Kg dogs
 - 130 mA RMS for 24 Kg dogs

- **Points of entry**
 - Skin impedance varies: 15 kΩ to 1 MΩ
 - Resistive barrier that limits current flow
 - Tissue (beneath skin) has low impedance
Macro vs. Micro Shock

- **Macroshock**
 - externally applied current
 - spreads through the body so less concentrated

- **Microshock**
 - applied current is concentrated at an invasive point
 - accepted safety limit is only 10 µA
 - generally only dangerous if current flows through the heart

Macroshock Hazards

- Most probable cause of death due to macroshock
 - ventricular fibrillation

- **Factors**
 - skin/body resistance
 - design of electrical equipment

- **Skin and body resistance**
 - dry skin has high resistance (~15k-1M ohm)
 - limits current through body
 - wet/broken skin has low resistance (~1% that of dry skin)
 - internal body resistance
 - ~200 ohm for each limb
 - ~100 ohm for trunk of body
 - resistance between two limbs = ~500 ohm
 - procedures that bypass skin resistance can be dangerous
 - example: gel electrodes, surgery, oral/rectal thermometers
Microshock Hazards

- Main causes
 - Leakage currents in line-operated equipment
 - Undesired currents through insulated conductors at different potentials
 - Differences in voltage between grounded conductive surfaces
- Leakage currents
 - If low resistance ground is available → no problem
 - If ground is broken → current flows through patient

Conductive Paths

- Direct connection to an internal organ (during measurement or surgery) makes patients susceptible to microshock
 - External electrodes of temporary cardiac pacemakers
 - Electrodes for intracardiac measuring devices
 - Liquid filled catheters placed in the heart
 - Liquid filled catheters have much greater resistance than electrodes

- Worst danger!
 - Currents flowing through the heart

- Electrode current density
 - Experiments suggest smaller electrode are more dangerous
Power Distribution

- Electrical power system in Healthcare Facility
 - must control available power (fuse/breaker to set max current)
 - must provide good ground

- Patient’s Electrical Environment -Grounding
 - NEC code: max potential between two surfaces
 - general care areas: 500mV under normal operation
 - critical care areas: 40mV under normal operation

- Isolated Power Systems
 - Ground fault
 - short circuit between hot conductor and ground
 - injects large current into grounding system
 - can create hazardous potentials on grounded surfaces
 - Isolation transformer
 - isolates conductors against ground faults
 - may include ground fault monitor/alarm

Ground Loops

- Differences in ground potential: major source of microshock
 - all intensive care units must have single ground for each patient
 - isolated from hospital ground
 - 40mV limit on potential of any conductive surfaces
 - Example: current due to ground loop flows through patient

Good grounding: all conductive surfaces & receptacle grounds at same potential
Electrical Isolation

- **Isolation amplifiers**
 - devices that break ohmic continuity of electric signals between input and output of the amplifier
 - different supply voltage sources and different grounds on each side of the barrier

- **Barrier isolation**
 - transformer, optical or capacitive isolation
 - no current across barrier

- **Implants**
 - proper insulation required to prevent microshocks