First identify all mirrors and then bias current flowing through each transistor:

→ Q1, Q2, Q3 are mirrors with current = I_b

→ Q14, Q7, Q6 are mirrors with current = I_b

→ Q10, Q11, Q12, Q13 is a cascaded mirror with bias current = I_b/2

Simplify by replacing mirrors by equivalent current sources or sinks.

Identify point of symmetry (Vs) and split the input stage.

Vs is constant for a differential input change.
Now trace the path of the current.

1) If V_{in^+} increases by ΔV then the current through Q4 increases by $g_m \Delta V$.

Now the drain of Q4 is connected to source of Q8, therefore the voltage of node A will decrease (remember current through Q4 will pull the voltage at node A down).

Question: By how much?

→ Now Q4 requires extra current = $g_m \Delta V$

If the current through Q8 decreases by $g_m \Delta V$, then Q4 can steal this current from I_1.

→ How much does the source voltage have to decrease to decrease the current through Q8 by $g_m \Delta V$?

$$g_m \Delta V_A = g_m \Delta V$$

$$\Delta V_A \approx -\Delta V$$

Change in V_A is approximately the same as V_{in^+}.

Similarly, the voltage at node B decreases by the same amount as ΔV.
Therefore, at the output mode, V_{out}, the equivalent circuit is given by:

\[\Delta V_{out} = (r_1 \parallel r_2) \cdot 2g_{m}AV \]

Key is to find the values of r_1 and r_2.

\[r_2 \text{ is due cascaded stage } Q11 \& Q13. \]

Therefore \[r_2 = g_m r_{ds} \] [See previous lecture examples].

To calculate draw back the path from \(V_{out} \)

\[\text{(Transistor numbers are important).} \]

To calculate \(r_4 \) we keep \(V_{in} \) fixed and write small signal equations for \(Q5, Q6, Q9. \)

\[Q5: \quad \Delta I_1 = g_d \Delta V_s \quad -(i) \]
\[Q6: \quad \Delta I_2 = -g_d \Delta V_s \quad -(i\!i) \]
\[Q9: \quad \Delta I_{out} = g_m \Delta V_s - g_d \Delta V_{out} \quad -(i\!i\!i) \]

\[\Delta I_2 - \Delta I_1 = \Delta I_{out} - (iv) \quad \text{current conservation @ node } V_s. \]

\[\Rightarrow \Delta V_s = \frac{\Delta I_{out}}{2g_d} \quad \text{(from (iv) \& (i) \& (ii))} \]

Substituting \(Q9. \)

\[\Delta I_{out} = \frac{g_m}{2g_d} \Delta I_{out} - g_d \Delta V_{out} \]

or \[r_1 = \frac{\Delta V_{out}}{\Delta I_{out}} = \frac{g_m}{2g_d^2} \]
Therefore gain using \(r_1 = \frac{g_m}{2g_d} \) and \(r_2 = \frac{g_m}{2g_d} \):

\[
\Delta V_{\text{out}} = \left(\frac{g_m}{g_d} \right) \left(\frac{g_m}{2g_d} \right) 2g_m \Delta V
\]

or

\[
\frac{\Delta V_{\text{out}}}{2\Delta V} = \frac{g_m}{3g_d}
\]

2\(\Delta V \) because the input voltage swing \((V_{\text{in}}^+ - V_{\text{in}}^-)\) to 2\(\Delta V \).

\[
\text{Gain} = \frac{g_m}{3g_d}
\]

Input voltage swing

\[
V_{\text{dd}} - V_{\text{eff6}} - V_{\text{th}} \geq V_{\text{in}}^+ \geq V_{\text{eff3}} + V_{\text{eff5}} + V_{\text{th}}
\]

[Remember \(V_{gs} = V_{\text{eff}} + V_{\text{th}} \)]

Output voltage swing

\[
V_{\text{dd}} - V_{\text{eff6}} - V_{\text{eff9}} \geq V_{\text{out}} \geq V_{\text{b}} - V_{\text{th}}
\]

Power dissipation

\[
P_d = 4V_{\text{dd}}I_b
\]