MEMS Overview

SPEAKER
• Andrew Mason, Asst. Professor in Electrical and Computer Engineering

TOPIC
• Overview of Micro-Electro-Mechanical Systems (MEMS)

OUTLINE
• Overview of MEMS & Microsystems
• Micromachining & MEMS process technology
• Micro-electro-mechanical devices & microsensors
 - Inertial sensors
 - Pressure sensors
 - Bio-sensors
 - Shock sensors
• Integrated Microsystems

What is MEMS?

• MEMS = Micro-Electro-Mechanical Systems
 - creation of 3-dimensional structures using integrated circuits fabrication technologies and special micromachining processes
 - typically done on silicon or glass (SiO₂) wafers
• MEMS Devices and Structures
 - transducers
 • microsensors and microactuators
 - mechanically functional microstructures
 • microfluidics: valves, pumps, flow channels
 • microengines: gears, turbines, combustion engines
• Integrated Microsystems
 - integrated circuitry and transducers combined to perform a task autonomously or with the aid of a host computer
 - MEMS components provide interface to non-electrical world
 • sensors provide inputs from non-electronic events
 • actuators provide outputs to non-electronic events
Why Use MEMS?

- **Motivation and Benefits**
 - Small Size
 - Light Weight
 - Enhanced Performance & Reliability
 - high resolution devices
 - array of devices
 - Low Cost (from batch fabrication)

- **Applications**
 - Automotive System
 - Health Care
 - Automated Manufacturing
 - Instrumentation
 - Environmental Monitoring & Control
 - Consumer Products
 - Aerospace

- **MEMS-based Microsystems**
 - highly integrated systems
 - sensing
 - actuation
 - computation
 - control
 - communication

Example MEMS-Based Microsystem

"Micro Cluster" Environmental Monitoring Microinstrument
(developed at U-Mich in the 1990s, A. Mason, K. Wise, et. al.)

Integrated Features
- Control
 - Microcontroller
 - Power Management
- Communication
 - RF Transceiver
- Sensing
 - Pressure
 - Humidity
 - Temperature
 - Vibration
- Packaging
MEMS Fabrication Technologies

- Applying **Micromachining** to create 3-D structures using 2-D processing

 2-D IC fabrication technology → 3-D structures

- **Micromachining Processes**
 - bulk and surface micromachining
 - isotropic etching
 - anisotropic etching
 - dissolved wafer process
 - deep reactive ion etching
 - anodic and fusion bonding
 - micromolding

Surface vs. Bulk Micromachining

Bulk Micromachining: Backside etch

Surface Micromachined Structure

Bulk Micromachining: Front-side Etch pit
Isotropic Etching of Silicon

- Isotropic etchant
 - etches in all directions
 - forms rounded pits in surface of wafer
- Most common solution
 - HNA: *Mixture of HF, HNO3, Acetic acid (CH3COOH)*

With agitation: Good reactant mass transport

Without agitation

Anisotropic Etching of Silicon

- Anisotropic etchant
 - directional-dependant etch: based on crystal planes
 - forms flat-surface pits in surface of wafer
- Common anisotropic etchants
 - EDP, KOH, TMAH

Anisotropic wet etching using EDP, KOH: (100) surface
- Etch stop on (111) plane
Anisotropic Etching: Convex vs. Concave Corners

masking layer not attacked by Si etchant

![Diagram showing convex and concave corners with labels for concave corner, convex corner, cantilever beam, (100) mask layer, (111) silicon, and buried etch stop layer (SiO2 in SOI wafers)].

Anisotropic Etching of Silicon: Example

bulk micromachined silicon proof mass
Dissolved Wafer Process

- Structure created by “diffusion masking layer”
 - heavily p-dope silicon (p++)
- Dissolve bulk of silicon to release the p++ structure

Dissolved Wafer Process Example

- Shock Switch
 - weighted cantilever beam with contacts that close by acceleration (shock)
- Fabrication Flow
 - create anchor, weight, support beam, and contact on Si
 - create cavity and contact on glass
 - bond wafers and then dissolve the Si wafer
Deep Reactive Ion Etching (DRIE)

- Reactive Ion Etching = RIE
 - mechanical (ion) etching in plasma for chemical selectivity
- Deep RIE
 - creates high aspect ratio patterns, narrow and deep

Trench-Refill process
- can fill the etched "trench" with another material

Glass-Si Anodic Bonding

- Bonding a glass wafer to a silicon wafer
 - both wafer can (and generally are) patterned with structures
- Application
 - creating sealed cavities on a wafer surface
 - can be sealed in vacuum
 - hermetic packaging
- Lead Transfer
 - need to bring the metal leads out of from sealed cavities
Silicon-Silicon Fusion Bonding

- Two silicon wafers with/without SiO2 can be bonded
- Advantages: No thermal mismatch
- Needs contamination free, smooth, and flat wafers (e.g. surface roughness ~5Å)

Process Flow
- Clean wafers
- Make the surfaces hydrophilic (e.g. dip in Nitric Acid)
- Rinse-Dry
- Place the wafers together apply pressure
- H2 or N2 anneal at 800-1000°C

Combined Bulk-Surface Process: Molding

- Etch silicon with high aspect ratio (e.g., DRIE)
- Refill partially with sacrificial layer (e.g. silicon oxide)
- Refill completely with structural layer (e.g. polysilicon)
- Example: U-Mich Precision Inertial Sensor

N. Yazdi & K. Najafi, Transducers’97.
Combined Bulk-Surface Process:

Precision Inertial Sensors

Figures

- Dielectric Layer
- Support Rim
- Silicon Proof mass
- Damping Holes
- Metal Pads

LIGA Process

- **LIGA:** Lithographie, Galvanof ormung, Abformung
- Form high aspect ratio structures on top of wafer
- Uses molding and electroplating
- Synchrotron Radiation (X-Ray) used

Features

- Aspect ratio: 100:1
- Gap: 0.25µm
- Size: a few millimeters

Figures

1. EXPOSURE
2. ELECTROPLATING
3. PMMA REMOVAL

uses multiple polymethyl methacrylate (PMMA) layers
LIGA Process: Example

Monolithic Integration of MEMS and ICs

Why Monolithic?

Performance:
- Reduce parasitics due to interconnecting devices
- Reduce noise & crosstalk

Size:
- Reduce pin count
- Reduce package volume

Cost:
- Integration with signal-processing → better functionality
- Reduce packaging cost
- Self test & calibration at wafer level
IC + MEMS Process Examples

UC Berkeley Integrated CMOS & surface micromachining technology
- CMOS first and MEMS second
- CMOS circuit passivated using silicon nitride
- Tungsten interconnects for CMOS

Sandia Integrated CMOS & surface micromachining technology
- MEMS first in recessed cavity
- CMOS second after planarization

J. Bustillo, R. Howe, R. Muller, IEEE Proceedings Aug. 98

J. Smith et. al., IEDM’95

MEMS Examples

Neural Recording Probes
- Monolithic Integration of Wafer-Dissolved Process and IC Technology

Najafi, Wise, JSSC-21 (6), May 1986
Example: Capacitive Accelerometer

Vertical accelerometer

(a)

(b)

Lateral accelerometer

(a)

(b)

Example: Z-Axis Torsional Accelerometer

Capacitive Accelerometer

3-Axis Monolithic Surface Micromachined Accelerometer

Analog Devices ADXL50

All-Silicon Micro-G Accelerometer

MEMS Overview, Prof. A. Mason
Draper's Tuning Fork Gyroscope

- Perforated masses (tines)
- Drive Combs
- Suspension

GM & UM Ring Gyroscope

- Support Springs
- Sense Vibrating Mode
- Drive Vibrating Mode

Capacitive Pressure Sensors

Consists of two components:
- Fixed electrode
- Flexible diaphragm forming a moving electrode
- Sealed vacuum cavity between the two electrodes

Diaphragm (Upper electrode)

Lower electrode

- Silicon
- Ti/Pt/Au
- Poly-Si
- SiO2/Si3N4/SiO2
- Glass Substrate
- External lead for glass electrode

A. Chavan, K.D. Wise, Transducers'97
Integrated Microsystems Architecture

- **Flexible Architectures**
 - reconfigurable
 - new/different sensors can be added
 - sensor bus

Microsystem Component: Interface Circuit

- **Generic capacitive sensor interface**
 - sensor readout
 - sensor bus communication
 - programmable operation – useful for range of sensors
Microsystem Component: Shock switch

- System wake-up switch
 - allows events to be captured while system is in sleep mode
 - useful for system-level power management
 - implements several shock thresholds