Memory Basics

• **RAM:** Random Access Memory
 - historically defined as memory array with individual bit access
 - refers to memory with both Read and Write capabilities

• **ROM:** Read Only Memory
 - no capabilities for “online” memory Write operations
 - Write typically requires high voltages or erasing by UV light

• **Volatility of Memory**
 - volatile memory loses data over time or when power is removed
 - RAM is volatile
 - non-volatile memory stores data even when power is removed
 - ROM is non-volatile

• **Static vs. Dynamic Memory**
 - Static: holds data as long as power is applied (SRAM)
 - Dynamic: must be refreshed periodically (DRAM)
SRAM Basics

- **SRAM = Static Random Access Memory**
 - Static: holds data as long as power is applied
 - Volatile: can not hold data if power is removed

- **3 Operation States**
 - hold
 - write
 - read

- **Basic 6T (6 transistor) SRAM Cell**
 - bistable (cross-coupled) INVs for storage
 - access transistors MAL & MAR
 - access to stored data for read and write
 - word line, WL, controls access
 - WL = 0, hold operation
 - WL = 1, read or write operation

![SRAM Diagram](image)
SRAM Operations

- **Hold**
 - word line = 0, access transistors are OFF
 - data held in latch
- **Write**
 - word line = 1, access tx are ON
 - new data (voltage) applied to bit and bit_bar
 - data in latch overwritten with new value
- **Read**
 - word line = 1, access tx are ON
 - bit and bit_bar read by a sense amplifier
- **Sense Amplifier**
 - basically a simple differential amplifier
 - comparing the difference between bit and bit_bar
 - if bit > bit_bar, output is 1
 - if bit < bit_bar, output is 0
 - allows output to be set quickly without fully charging/discharging bit line
SRAM Bit Cell Circuit

- **Two SRAM cells dominate CMOS industry**
 - **6T Cell**
 - all CMOS transistors
 - better noise immunity
 - **4T Cell**
 - replaces pMOS with high resistance (~1GΩ) resistors
 - slightly smaller than 6T cell
 - requires an extra high-resistance process layer

(a) 6T cell
(b) 4T cell with poly resistors
6T Cell Design

- Critical Design Challenge
 - inverter sizing
 - to ensure **good hold** and **easy/fast overwrite**
 - use minimum sized transistors to save area
 - unless more robust design required

- Write Operation
 - both bit and bit_bar applied
 - inputs to inverters both change
 - unlike DFF where one INV overrides the other
 - critical size ratio, β_A/β_n
 - see resistor model
 - want R_n & R_p larger than R_A
 » so voltage will drop across R_n, R_p
 - typical value, $\beta_A/\beta_n=2$
 - so $R_n = 2 R_A$
 - set by ratio $(W/L)_A$ to $(W/L)_n$
SRAM Cell Layout

- **Design Challenge**
 - minimum cell size (for high density SRAM array)
 - with good access to word and bit lines

- **Example Layout**
 - note WL routed in poly
 - will create a large RC delay for large SRAM array
Multi-Port SRAM

- Allows multiple access to the same SRAM cell simultaneously.
 - Provide high data bandwidth.

- Applications
 - Register file
 - Cache
 - Network switch
 - ASIC etc.

- A multi-port SRAM cell schematic. Each port has
 - two access transistors
 - two bit line
 - one word selection line.
 - one address decoder
Multi-Port SRAM (cont.)

• Challenges in multi-ports SRAM.
 - layout size increases quadratically with # of ports
 • more word selection lines
 • more bitline lines
 - → lower speed and higher power consumption

• Multi-port SRAM options for ECE410 Design Project
 - Two ports
 • 1 port read and write
 • 1 port read only
 - Three ports
 • 2 ports for read and 1 port for write
SRAM Arrays

- \(N \times n \) array of 1-bit cells
 - \(n \) = byte width; 8, 16, 32, etc.
 - \(N \) = number of bytes
 - \(m \) = number of address bits
 - \(\text{max } N = 2^m \)

- Array I/O
 - data, in and out
 - \(D_{n-1} - D_0 \)
 - address
 - \(A_{m-1} - A_0 \)
 - control
 - varies with design
 - \(WE = \) write enable (assert low)
 - \(WE=1 = \) read, \(WE=0 = \) write
 - \(En = \) block enable (assert low)
 - used as chip enable (CE) for an SRAM chip
SRAM Block Architecture

- Example: 2-Core design
 - core width = k \cdot n
 - n = SRAM word size; 8, 16, etc.
 - k = multiplier factor, 2, 3, 4, etc.
- shared word-line circuits
 - horizontal word lines
 - WL set by **row decoder**
 - placed in center of 2 cores
 - WL in both cores selected at same time

- Addressing Operation
 - address word determines which row is active (which WL = 1) via **row decoder**
 - row decoder outputs feed **row drivers**
 - buffers to drive large WL capacitance

- Physical Design
 - layout scheme matches regular patterning shown in schematic
 - horizontal and vertical routing
SRAM Array Addressing

- Standard SRAM Addressing Scheme
 - consider a $N \times n$ SRAM array
 - $N =$ number of bytes, e.g., 512, 2k
 - $n =$ byte size, e.g., 8 or 16
 - m address bits are divided into x row bits and y column bits ($x+y=m$)
 - address bits are encoded so that $2^m = N$
 - array organized with both vertical and horizontal stacks of bytes
SRAM Array Addressing

- **Address Latch**
 - D-latch with enable and output buffers
 - outputs both A and A_bar

- **Address Bits**
 - Row address bits = Word Lines, WL
 - Column address bits select a subset of bits activated by WL

- **Column Organization**
 - typically, organized physically by bits, not by bytes
 - Example, SRAM with 4-bit bytes in 3 columns (y=3)
 - 3 4-bit bytes in each row

(Sample diagram showing address lines and bit organization)
SRAM Array Column Circuits

- **SRAM Row Driver**
 - decoder output, Dec_out
 - enable, En, after address bits decoded
- **Row Decoder/Driver activate a row of cells**
 - each 2-core row contains 2k bytes (2k·n bits)
- **Column Multiplexers**
 - address signals select one of the k bytes as final output not used in row decoder
 - figure shows example for k=3
 - for an 8-bit RAM (word size)
 - MUX used for Read operations
 - De MUX used for Write operations
- **Column Drivers**
 - bit/bit_bar output for Write operations
Column Circuitry

- **Precharge Concept**
 - common to use dynamic circuits in SRAMS
 - dynamic circuits have precharge and evaluate phases
 - precharge high capacitance on bit lines
 - avoids heavy capacitive loading on each SRAM cell

- **Precharge Phase**
 - all bit lines pulled to VDD
 - all bit_bar to ground

- **Evaluate Phase**
 - bits activated by WL connect to bit lines
 - if data = 1, keep precharged value
 - if data = 0, discharge bit line
Bit line (column) Circuitry

- expanded (transistor-level) view of SRAM column

pMOS precharge loads - charge when $\phi = 0$

nMOS switches select which column/bit is passed to Read/Write circuit
Sense Amplifiers

- **Read sensing scheme**
 - look at differential signal
 - bit and bit_bar
 - can get output before bit lines fully charge/discharge by amplifying differential signals

- **Differential Amplifier**
 - simple analog circuit
 - output high
 - if bit > bit_bar
 - output low
 - if bit_bar > bit
 - can implement as dynamic circuit
DRAM Basics

- **DRAM = Dynamic Random Access Memory**
 - Dynamic: must be refreshed periodically
 - Volatile: loses data when power is removed

- **Comparison to SRAM**
 - DRAM is smaller & less expensive per bit
 - SRAM is faster
 - DRAM requires more peripheral circuitry

- **1T DRAM Cell**
 - single access nFET
 - storage capacitor (referenced to VDD or Ground)
 - control input: word line, WL
 - data I/O: bit line
DRAM Operation

- RAM data is held on the storage capacitor
 - temporary - due to leakage currents which drain charge
- Charge Storage
 - if C_s is charged to V_s
 - $Q_s = C_s V_s$
 - if $V_s = 0$, then $Q_s = 0$: LOGIC 0
 - if V_s = large, then $Q_s > 0$: LOGIC 1
- Write Operation
 - turn on access transistor: $WL = VDD$
 - apply voltage, V_d (high or low), to bit line
 - C_s is charged (or discharged)
 - if $V_d = 0$
 - $Vs = 0$, $Q_s = 0$, store logic 0
 - if $V_d = VDD$
 - $Vs = VDD-Vtn$, $Q_s = Cs(VDD=Vtn)$, logic 1
- Hold Operation
 - turn off access transistor: $WL = 0$
 - charge held on C_s
Hold Time

• During Hold, leakage currents will slowly discharge Cs
 - due to leakage in the access transistor when it is OFF
 - \(I_L = -\frac{\Delta Q_s}{\Delta t} = -C_s \frac{\Delta V_s}{\Delta t} \)
 • if \(I_L \) is known, can determine discharge time

• Hold Time, \(t_h \)
 - max time voltage on Cs is high enough to be a logic 1
 • = time to discharge from \(V_{max} \) to \(V_1 \) (in figure above)
 - \(t_h = (C_s/I_L)(\Delta V_s) \), if we estimate \(I_L \) as a constant
 • desire large hold time
 • \(t_h \) increases with larger \(C_s \) and lower \(I_L \)
 • typical value, \(t_h = 50\mu\text{sec} \)
 - with \(I_L = 1nA, C_s=50fF, \) and \(\Delta V_s=1V \)
 error in textbook, says 0.5\(\mu\text{sec} \) near Eqn. 13.

ECE 410, Prof. A. Mason

Lecture Notes 13.19
Refresh Rate

- DRAM is “Dynamic”, data is stored for only short time

- Refresh Operation
 - to hold data as long as power is applied, data must be refreshed
 - periodically read every cell
 - amplify cell data
 - rewrite data to cell

- Refresh Rate, f_{refresh}
 - frequency at which cells must be refreshed to maintain data
 - $f_{\text{refresh}} = 1 / 2t_h$

- must include refresh circuitry in a DRAM circuit

Refresh operation
DRAM Read Operation

- **Read Operation**
 - turn on access transistor
 - charge on C_s is redistributed on the bit line capacitance, C_{bit}
 - this will change the bit line voltage, V_{bit}
 - which is amplified to read a 1 or 0

- **Charge Redistribution**
 - initial charge on C_s: $Q_s = C_s V_s$
 - redistributed on C_{bit} until
 - $V_{bit} = V_s = V_f$ (final voltage)
 - $Q_s = C_s V_f + C_{bit} V_f$
 - $C_s V_s = V_f (C_s + C_{bit})$
 - due to charge conservation
 - $V_f = \frac{C_s V_s}{C_s + C_{bit}}$, which is always less than V_s
 - V_f typically very small and requires a good sense amplifier
DRAM Read Operation (cont.)

- DRAM Read Operation is Destructive
 - charge redistribution destroys the stored information
 - read operation must contain a simultaneous rewrite
- Sense Amplifier
 - SA_En is the enable for the sense amplifier
 - when EQ is high both sides of the sense amp are shorted together. The circuit then holds at its midpoint voltage creating a precharge.
 - the input and output of the sense amp share the same node which allows for a simultaneous rewrite

http://jas.eng.buffalo.edu/education/system/senseamp/
DRAM Physical Design

- Physical design (layout) is CRITICAL in DRAM
 - high density is required for commercial success
 - current technology provides > 1Gb on a DRAM chip
- Must minimize area of the 1T DRAM cell
 - typically only 30% of the chip is needed for peripherals (refresh, etc.)
- For DRAM in CMOS, must minimize area of storage capacitor
 - but, large capacitor (> 40fF) is good to increase hold time, \(t_h \)
- Storage Capacitor Examples
 - trench capacitor
 - junction cap. with large junction area
 - using etched pit
 - stacked capacitor
 - cap. on top of access tx
 - using poly plate capacitor

A DRAM cell using a trench capacitor
ROM Basics

• **ROM**: Read Only Memory
 - no capabilities for “online” memory Write operations
 - data programmed
 - during fabrication: ROM
 - with high voltages: PROM
 - by control logic: PLA
 - **Non-volatile**: data stored even when power is removed

• **NOR-based ROM**
 - Example: 8b words stored by NOR-based ROM
 - address selects an active ‘row’
 - each output bit connected to the active row will be high
 - otherwise, output will be low

![Diagram of NOR-based ROM](image)
Pseudo-nMOS ROM

- **Pseudo-nMOS**
 - always ON active pMOS load
 - pulls output high if nMOS is off
 - controlled nMOS switch
 - pulls output low if input is high
 - competes with pMOS
 - must be sized properly
 - consumes power when output is low

- **ROM Structure**
 - address is decoded to choose and active ‘row’
 - each row line turns on nMOS where output is zero
 - otherwise, output stays high

- **Set ROM Data**
 - by selectively connecting nMOS to the output lines
ROM Arrays

- **Pseudo nMOS Arrays**
 - most common style for large ROMS

- **Design Concerns**
 - nMOS must “overdrive” pMOS
 - need $\beta_n > \beta_p$ so that V_O is low enough
 - must set $W_n > W_p$
 - but, this also increases row line capacitance
 - requires careful analog design

- **Programming Methods**
 - mask programmable
 - create nMOS at all points
 - define data with poly contacts
 - layout programmable
 - only place nMOS where needed
 - shown in figure
ROM Array Layout

- very “regular” layout
- high packing density
 - one tx for each data point
Programmable ROM

• PROM
 - programmable by user
 • using special program tools/modes
 - read only memory
 • during normal use
 - non-volatile

• Read Operation
 - like any ROM: address bits select output bit combinations

• Write Operation
 - typically requires high voltage (~15V) control inputs to set data

• Erase Operation
 - to change data
 - EPROM: erasable PROM: uses UV light to reset all bits
 - EEPROM: electrically-erasable PROM, erase with control voltage
PROM Storage Cells

- **Physical Structure**
 - pair of stacked poly gates
 - top gate acts as normal access/control gate
 - bottom gate is ‘floating’, changes threshold voltage

- **Cell Operation**
 - no charge on floating gate
 - transistor has normal V_{tn}
 - negative charge on floating gate
 - opposes action of applied gate voltage
 - keeps transistor turned off
 - unless a high V_{tn_H} is applied; $V_{tn_H} > VDD$ so will not turn on with normal voltages
EPROM Arrays

- Structure is similar to a RAM Array
- WL selects which word of data will connect to output
- When WL is high
 - each tx in the selected data byte will set the output bit line
 - if floating gate has no charge, bit line will pull down for a LOGIC 0
 - if floating gate is charged, tx will not turn on and bit line will remain high for a LOGIC 1

Column circuitry can be used to form arrays, as in RAM
Programming & Erasing E²PROMs

- **Programming techniques**
 - hot electron method
 - charge (electrons) transferred to the floating gate by quantum mechanical tunneling of hot electrons (high energy electrons)
 - accomplished by applying a high voltage (~12-30V) to the drain node
 - charge can remain on floating gate for 10-20 years!
 - Fowler-Nordheim emission
 - uses modified gate geometry to allow quantum mechanical tunneling from the drain into the floating gate

- **Erasure Techniques**
 - bit erasure: by reversing programming voltages
 - **flash** EPROMs: erase large block simultaneously
Programmable Logic Arrays

- Programmable Logic Array: PLA
 - circuit which can be programmed to provide various logic functions
- Example: Sum-of-Products PLA
 - with four inputs \((a, b, c, d)\), the possible SOP outputs are
 - \(f = \sum m_i(a,b,c,d)\) [OR minterms]
 - where \(m_i(a,b,c,d)\) are the minterms [AND inputs]
 - has an AND-OR structure which can be reproduced in circuits
AND-OR PLA Implementation

- Logic Array Diagram
 - example for
 - \(f_x = m_0 + m_4 + m_5 \)
 - \(f_y = m_3 + m_4 + m_5 + m_{15} \)
 - etc.

- Programming PLA
 - transistor switch at each optional connection location
 - turn \(tx \) on to make connection

- VLSI Implementation
 - replace AND-OR with NOR gates

\[\text{error in text} \]
Gate Arrays

- Gate array chip contains
 - a huge array of logic gates
 - programmable connections
 - allows gates to be combined to make larger functions (e.g., DFF)
- Field Programmable Gate Array (FGPA)
 - connections can be programmed easily to redefine function
 - can have more than 100,000 logic gates on an FPGA
 - capable of emulating complex functions, like a 32-bit microprocessor
 - program techniques: the antifuse concept
 - physical design: built-in fuses where connections might be wanted
 - high current short-circuits the fuse to create low resistance path