
Stack & Subroutines
h Ch. 3, part 2

ECE331
Rev.S11

Stack-Subroutines p.1ECE 331, Prof. A. Mason

Outline
StackStack
 concept

 hardware

 ASM instructions

 examples

SubroutinesSubroutines
 concept

 ASM instructions

 examples

Parameter passing techniques

Stack-Subroutines p.2ECE 331, Prof. A. Mason

Stack
Stack = section of memory used for temporary storageStack = section of memory used for temporary storage
 often used to store CPU register values before jumping to subroutines

 has first-in/last-out (FILO) structure

Example:

68HC12 definitions
E l

A B C

 “bottom_of_stack” = highest stack memory address
 just “below” (higher address) starting point of the stack

 “top of stack” = memory address of last stacked value

71FF
7200

.

Example
memory address

p_ _ y
 decreases as values are added to stack

 addresses above top_of_stack
are considered empty

.

.

.
7EFF
7F00y

Stack can generally be any memory location
 defined starting at $3F80 for

7F00
.
.
.

7FFD

Stack-Subroutines p.3ECE 331, Prof. A. Mason

 defined starting at $3F80 for
lab evaluation board

7FFD
7FFE
7FFF

Hardware and ASM Instructions
Stack HardwareStack Hardware
 Stack Pointer = 16b CPU register holding value of top_of_stack
 initially set to bottom_of_stack

 automatically decreases/increases value as items added/taken to/from stack
 points to top (lowest address) filled stack location

S k ASM I iStack ASM Instructions
 LDS, load stack, set initial value of stack
 EXAMPLE:

 PUSH (PSHA, PSHB, ..D, ..CCR, ..X, ..Y)
 SP SP – 1, copy register data onto stack @ <SP>

for lab evaluation board
16b Push
• SP SP – 2
• <SP SP+1>SP SP 1, copy register data onto stack @ SP

 PULL (PULA, PULB, ..D, ..CCR, ..X, ..Y)
 copy stack data to register, SP SP + 1

 Also: STS INS DES TSX TXS TSY TYS

<SP, SP+1>
16b Pull
• <SP, SP+1>
• SP SP + 2

order of instr operations

Stack-Subroutines p.4ECE 331, Prof. A. Mason

 Also: STS, INS, DES, TSX, TXS, TSY, TYS order of instr. operations
important to understanding
how stack works

Stack Example
ASM code executedASM code executed

Observations
 SP points to “top of stack”

 SP is decreased by 1
for PSHA/B (by 2 for PSHD/X/Y/C)for PSHA/B (by 2 for PSHD/X/Y/C)

 SP is increased by 1 for PULA/B
(by 2 for PULD/X/Y/C)

 Stack functions as first-in / last-out Stack functions as first-in / last-out
(FILO), same as “last-in, first-out”

 Data is not removed from Stack by
a PUL instruction

Stack-Subroutines p.5ECE 331, Prof. A. Mason

a PUL instruction
 data above SP is ignored, not deleted

Explaining Stack ASM Code
What does the following code do?What does the following code do?

LDS #$8000
PSHA
PSHBPSHB
PSHX
PSHY
TSXTSX
LDAA 3,X
LDAB 5,X

A AA

Initial Values Stack Final Values

A7FF9

B
X
Y

BB
11 22
F0 0F

B
X
Y

7FFA
7FFB
7FFC
7FFD
7FFE

Stack-Subroutines p.6ECE 331, Prof. A. Mason

Y
SP

F0 0F
80 00

Y
SP

7FFE
7FFF
8000

op-code prog. address
Another Stack Example

Show results after execution of PSHAShow results after execution of PSHA
PSHB
PSHY

What ASM code o ld restore accB (d ff t thi l)?What ASM code would restore accB (and affect nothing else)?
INS
INS
PULB

Option1 Option2

Stack-Subroutines p.7ECE 331, Prof. A. Mason

PULB
DES
DES
DES

Example Stack Code
 ASM code LST file

label1 mnemonic2 operand3 prog./data machine opcode5

directive1 mem. addr.4

ORG $6000 =00006000
D_REC FCB $AA,$BB,$CC,$FF,$EE,$01 6000 AA BB CC FF EE 01

FCB $A1,$B2,$C3,$F4,$01 6006 A1 B2 C3 F4 01
FCB $81 $72 $63 $54 $45 $E5 $01 600B 81 72 63 54 45 E5 01

 .ASM code .LST file

FCB $81,$72,$63,$54,$45,$E5,$01 600B 81 72 63 54 45 E5 01
RESULT RMB $0A 6012 +000A
D_CPY RMB $10 601C +0010

ORG $4000 =00004000
LDS #$8000 4000 CF 8000
LDX #D_REC 4003 CE 6000
LDY #D_CPY 4006 CD 601C
LDAA #$0 4009 86 00
PSHA 400B 36

LOOP LDAB 0,X 400C E6 00
STAB 0,Y 400E 6B 40
CMPB #$01 4010 C1 01
BEQ ENDLP 4012 27 05
INX 4014 08

MEMORYADDRESS

top ofINX 4014 08
INY 4015 02
INCA 4016 42
BRA LOOP 4017 20 F3

ENDLP PULB 4019 33
PSHY 401A 35
LDY #RESULT 401B CD 6012

MCU
Registers

Program

Unused/
Reserved

$0000

$4000

4000 CF
4001 80
4002 00

402D 18
402E 0F

.

.

.

}one instruction

top of
program

end of
program

STAA B,Y 401E 6A ED
PULY 4020 31
INCB 4021 52
PSHB 4022 37
CPX #RESULT 4023 8E 6012
BEQ DONE 4026 27 05
INX 4028 08

Data

Stack

$6000

6000 AA
6001 BB

602B 00
602C 00

.

.

.

top of data

end of data
more data /sta ck

more progra m

Stack-Subroutines p.8ECE 331, Prof. A. Mason

INX 4028 08
INY 4029 02
CLRA 402A 87
BRA LOOP 402B 20 DF

DONE TBA 402D 18 0F
END

Unused/
Reserved

$8000

7FFF bottom of stack

top of stack
(varies)

Subroutines
Subroutine = independent program module performing aSubroutine = independent program module performing a

specific task
 can be called repeatedly by main program or another subroutine

 similar to a library function in higher level languages

Advantages of subroutines (relative to branch loops)Advantages of subroutines (relative to branch loops)
 less program memory than repeating multiple branch loops in a linear

sequence

it i lti l write once, use in multiple programs

Stack-Subroutines p.9ECE 331, Prof. A. Mason

Subroutine ASM Instructions
BSR branch to s/r (subroutine)BSR, branch to s/r (subroutine)
 adjust PC by -127 to +128 s/r must be close in program mem.

JSR, jump to s/rj p
 s/r can be anywhere in program memory

<>

Operation of BSR,JSR
 current PC value (points to next instruction) automatically(p) y

stored to STACK

 PC value set to location of s/r

RTS return from s/rRTS , return from s/r
 restores PC value from STACK

 s/r must end with SP pointing to exact position when s/r began

Stack-Subroutines p.10ECE 331, Prof. A. Mason

 otherwise, it can’t reload correct PC value from STACK

Automatic Subroutine Actions
 BSR JSR BSR, JSR

1.SP SP – 1

2.PCL STACKSP

7FF9
7FFA
7FFB
7FFC

3.SP SP – 1

4.PCH STACKSP AA
BB
22

7FFC
7FFD
7FFE
7FFF
8000

RTS
1.STACKSP PCH

8000

2.SP SP + 1

3.STACKSP PCL

4.SP SP + 1 YY
22

7FF9
7FFA
7FFB
7FFC
7FFD

XX

AA
BB
22 7FFD

7FFE
7FFF
8000

Stack-Subroutines p.11ECE 331, Prof. A. Mason

Subroutine/Stack Example

7FFD
7FFE
7FFF
8000

7FFC
7FFD
7FFE
7FFF

7FFC

2

7FFD
7FFE
7FFF

7FFD7FFD
7FFE
7FFF

7FFD

Stack-Subroutines p.12ECE 331, Prof. A. Mason

7FFE
7FFF
8000

Examples
Example 2: For lst output below s/r “bonk” begins at whatExample 2: For .lst output below, s/r bonk begins at what

program memory address?
prog. address .lst machine code

LDS #$C200 CFC200$C0FDLDS #$C200
BRS BONK
… …

CFC200
0720
…

$C0FD
$C100
$C102

Example 3: Fill in STACK when s/r “bonk” begins
Q1 stack addresses?Q1: stack addresses?

Q2: what “information” is put on stack?

Q3: what data values go in stack?

memory address

Q4: where is final SP?

SP(ini)C200

Stack-Subroutines p.13ECE 331, Prof. A. Mason

Examples
Example 4: Nested SubroutinesExample 4: Nested Subroutines
 Illustrate STACK after NOP (no-operation) instruction
 Q1: what is bottom_of_stack (initial SP value)?

 Q2: what are remaining STACK addresses?

 Q3: what information/values go to stack @ BSR?

 Q4: what information/values go to stack @ JSR

 Q5: where is SP @ NOP?

memory address SP
Stack

SP(ini)

Stack-Subroutines p.14ECE 331, Prof. A. Mason

SP(ini)

Subroutine Techniques
Good Subroutine IsGood Subroutine Is
 Independent: does not rely on other programs or s/r that could change

 Transparent: restores CPU registers to values before s/r
 typically store CPU registers temporarily to STACK

 Relocatable: data and code is location independent
 do not rely on data in specific memory locationsy y

 best to use only variables defined w/in s/r; avoid DIR and EXT addr. modes

Parameter Passing Techniques
 How should you pass input/output data to/from a subroutine? How should you pass input/output data to/from a subroutine?
 store data in CPU registers

 store address of data in CPU registers

push data to STACK (tricky!) push data to STACK (tricky!)

 data memory is not a good option; other program might change it

 Describe parameter requirements in s/r comments

Stack-Subroutines p.15ECE 331, Prof. A. Mason

 Always restore non-parameter CPU registers
 return from s/r with values before s/r back in CPU registers

