
ASM Programming p.2ECE 331, Prof. A. Mason

ASM Programming: Ch. 2-3
Outline
• Structured programming process
• Program structures
• Looping concept
• Looping constructs
• ASM code examples
• Branch instructions
• Relative address mode
• BRSET/BRCLR instructions
• Instruction timing
• Delay loops
• ASM loop/branch examples

ASM Programming p.3ECE 331, Prof. A. Mason

Structured Programming Process
1. Define Problem

-what exactly should your program do?
2. Plan Solution = Develop Algorithm

-sequence of computational or logical step to transform given inputs to desired outputs
Options

• top-down: start with goals, work down to required outputs
• bottom-up: start with required outputs, work up to goals
• divide & conquer

– use top-down to break into tasks
– use bottom-up to solve each task
– best method for large programs

Approaches for algorithm planning
• Pseudocode: non-code list of tasks (example will follow)
• Flowcharts: graphical map of algorithm flow (example follow)
3. Code Algorithm

-ASM, C, higher level language
4. Simulate & Debug
5. Test in Hardware & Debug

Flow Chart Elements

ASM Programming p.4ECE 331, Prof. A. Mason

Program Structures
sequential conditional looping

start

end

?

if true else

T F

start

repeat until

Assembly Implementations

start

end

conditional
branch

always
branch

subroutine

jump

return

?

ASM Programming p.5ECE 331, Prof. A. Mason

Looping Concept
CONCEPT: Consider need to sum 10 HW grades

Option 1: "Brute Force"
pseudo code

set sum = 0
sum = sum + score 1
sum = sum + score 2
. . .
sum = sum + score 10

ASM code
CLA ;set sum to zero
ADDA$1000 ;assume scores saved starting at mem addr $1000
ADDA$1001
. . .
ADDA$1009
STAA SUM ;assume SUM = mem addr to store the sum

How many bytes in above ASM code? Approximately 3 x number_of_scores = ~30

Code gets longer if we want to add more scores

ASM Programming p.6ECE 331, Prof. A. Mason

Looping Concept
Option 2: Use a Loop
pseudo code

set sum = 0
set count = 0
while count < 10

sum = sum + score(count)
increment count

(loop back to “while”)
ASM code

See “Simple Looping Code”

Can you identify the loop in this program?
How many bytes of code in the loop?

21, for an infinite number of scores

Simple Looping Code
.ASM code file, text
; Loop example for Ch. 3 notes by A.Mason. Mar 09
; Sums 10 values from memory and store result in SUM. Assumes 10
values to sum are stored at $1000
; assumes prior sum stored at SUM

ORG $4000
LDX #$1000 ;set x to fist memory address
LDAB SUM ;load staring sum into accB
LDAA #$00 ;initialize counter to 0

CHECK CMPA #$0A ; ?added all 10?
BEQ DONE ; if yes, done
ADDB 0,X ; if no, add # to SUM
INX ;increment IX
INCA ;increment counter
BRA CHECK ;repeat loop

DONE STAB SUM ;store result
SUM EQU $4400

END

.LST compiled file, text
Line Addr Op Code Label Mnemonic Operand Notes

1: ; Loop example for Ch. 3 notes by A.Mason. Mar 09
2: ; Sums 10 values from memory & store result in SUM
3: ; assumes 10 values to sum are stored at $1000
4: ; assumes prior sum stored at SUM
5: =00004000 ORG $4000
6: 4000 CE 1000 LDX #$1000 ;set x to fist memory addr
7: 4003 F6 4400 LDAB SUM ;load staring sum into accB
8: 4006 86 00 LDAA #$00 ;initialize counter to 0
9: 4008 81 0A CHECK CMPA #$0A ; ?added all 10?
10: 400A 27 06 BEQ DONE ; if yes, done
11: 400C EB 00 ADDB 0,X ; if no, add # to SUM
12: 400E 08 INX ;increment IX
13: 400F 42 INCA ;increment counter
14: 4010 20 F6 BRA CHECK ;repeat loop
15: 4012 7B 4400 DONE STAB SUM ;store result
16: =00004400 SUM EQU $4400
17: END

.S19 machine code record, binary
S0030000FC
S1134000CE1000F644008600810A2706EB00084221
S108401020F67B4400D2
S9030000FC

ASM Programming p.7ECE 331, Prof. A. Mason

Looping Constructs
For Loops

• execute S i2-i1 times, S = any set of instructions, I = counter

• see flowchart below
For I = i1 to i2

Do S
Do While Loops

• execute S as long as C is TRUE, C = condition that will be
false when done with S

• see flowchart below
While C = true

Do S
Repeat Until Loops

• execute S until C is FALSE, C = condition that will be false
when done with S

• functionally similar to Do While but with slightly different flow

• see flowchart below
Repeat S,

Until C = false
Repeat Until Loops

For Loops

Do While Loops

ASM Programming p.8ECE 331, Prof. A. Mason

ASM Examples
Discuss ASM Examples in HO_5, pg. 4-6
• Simple Arithmetic ASM Program Examples

– Example 1: Write a program to add the numbers stored at memory
locations $800, $801, and $802, and store the sum at memory
location $900.

– Example 2: Write a program to subtract the contents of the
memory location at $805 from the sum of the memory locations at
$800 and $802, and store the result at the memory location $900.

– Example 3: Write a program to add two 16-bit numbers that are
stored at $800~$801 and $802~$803, and store the sum at
$900~$901.

– Example 4: Write a program to subtract 5 from four memory
locations at $800, $801, $802, and $803.

• Assembly and Execution Example (Chapter 2)

ASM Programming p.9ECE 331, Prof. A. Mason

More ASM Examples
• See “Example ASM Code.txt” for more examples

;Simple AND example (A.Mason Feb 10)
;Function: AND value in accA with value in program memory and store to memory
;Address mode for each instruction shown in comments
;version1: no labels

ORG $4000
LDAA #$0F ;immediate
ANDA #$F0 ;immediate
STAA $5550 ;extended
SWI
END

;Simple AND example (A.Mason Feb 10)
;Function: AND value in accA with value in memory and store to memory
;Address mode for each instruction shown in comments
;version2: uses labels and equates, different values than version1

ORG $4000
Num1 EQU $AA
Num2 EQU $55
Result EQU $5550

LDAA #Num1 ;immediate
ANDA #Num2 ;immediate
STAA Result ;extended
SWI
END

;Simple AND example (A.Mason Feb 10)
;Function: AND value in accA with value in memory and store to memory
;Address mode for each instruction shown in comments
;version3: uses data storage and gets operands from memory

ORG $4000
LDAA Num1 ;extended
ANDA Num2 ;extended
STAA Result ;extended
SWI ;stop

;data storage
ORG $5550

Num1 FCB $FA
Num2 FCB $5F
Result FCB $00 ;initialize result byte [5552] to 00

END

;ECE331 Simple Summation (A.Mason Feb 10)
;add series of numbers beginning at 'nums'
;number of values added set by value in 'count'
;values must be small to avoid overflow; 'count' must be < 10
;requires indexed addressing; to simplify code, numbers added in reverse
order

org $4000
ldab count ;# of numbers to add

decb ;# of additions is 1 less than # of numbers
ldx #nums ;addr for nums
ldaa sum ;load starting sum

again adda b,x
decb ;decrement counter
bpl again ;if b >= zero, add another
staa sum

swi
org $6000

count fcb $03
nums fcb 1,2,3,4,5,6,7,8,9,10
sum fcb $F0 ;previous sum -random value

end

; ECE331 Example of SET/CLR Bit and Branch Instructions
; program will read data and set lower nibble to %0011
; until odd value is read

ORG $4000
LDAA #00 ; initialize index offset

byte
LDX #DATA ; initialize index

reference register
TOP BRSET A,X,$01,ODD ;end if odd value

BSET A,X,%00000011
BCLR A,X,%00001100
LDAB A,X
INCA
BRA TOP

ODD SWI ;end
; data storage

ORG $6000
DATA FCB $EE, $DC, $D0, $F4

FCB $80, $00, $55, $22
FCB $AA
END

ASM Programming p.10ECE 331, Prof. A. Mason

Branch Instructions
• Function of branch instructions

–implement loops; IF-THEN-ELSE constructs

–alter execution order of linear instructions

• 68HC12 has 2 types of branches
–conditional

–unconditional

–both use Relative Addr. Mode

• Unconditional Branches
–does not depend on any conditions; will always occur

– BRA ;branch always
• 8-bit signed offset

• distance to next instr. +127 to -128

–EXAMPLE:

–best to use labels & let assembler determine relative offset
operand

ASM Programming p.11ECE 331, Prof. A. Mason

Branch Instructions II
• More unconditional branches

– LBRA ;long branch always, 16-bit signed offset
– JMP ;jump, 16-bit extended/indexed addr.

• not relative like BRA; specific 16-bit addr.

• less compact & more clocks than BRA

• Conditional Branch
–branch only if a condition is true

• conditions derived from CCR flags

• previous instr. must set proper CCR flags
– can use a Test/Compare instruction to set flags without changing memory values

– Bxx ;conditional branches with 8-bit signed offset
– LBxx ;conditional long branches with 16-bit signed offset
–all conditional branches use Relative Addr. Mode

–best to use labels & let assembler determine relative offset
operand

ASM Programming p.12ECE 331, Prof. A. Mason

AMS Branch Instructions
Unconditional Branches

Mnemonic Function Comment
BRN branch never useful as delay
BRA branch always 8-bit signed offset

Simple Conditional Branches
Mnemonic “if” Function Condition = Flag
BCC carry clear C=0
BCS carry set C=1
BEQ equal Z=1
BNE not equal Z=0
BMI minus N=I
BPI plus N=0
BVS overflow set V=1
BVC overflow clear V=0

Unsigned Conditional Branches
Mnemonic “if” Function Condition Flags
BHS higher or same r 0 C=0
BHI higher than r > 0 C+Z=0
BLS lower or same r 0 C+Z=1
BLO lower than r < 0 C=1

Signed Conditional Branches
Mnemonic “if” Function Condition Flags
BGE greater or equal r 0 NV=0
BGT greater than r > 0 Z+NV=0
BLE less or equal r 0 Z+NV=1
BLT less than r < 0 NV=1

Example:
If all flags = 0 after
an instruction, which
branches would be
taken?

From HO_3 (HO_2B Spring 2011)

ASM Programming p.13ECE 331, Prof. A. Mason

“Relative” Concept
• How can we define the address of the red house?

• Absolute Address
–3rd House on the left from Main Street

• Relative Address
–locate by offset from reference

–references offsets offset + reference
• Green House

• Pink House

• ‘X’

RED

GREEN

PINK

ASM Programming p.14ECE 331, Prof. A. Mason

Relative Address Mode
• Function

–adjust PC by value in operand

–operand can be set by program or by assembler
• assembler can calculate “distance” to a Label on line to branch to

–only used in Branch instr.

• EXAMPLES

ASM Programming p.15ECE 331, Prof. A. Mason

Counting Relative Offsets
• Offset in Relative Addr. Mode specifies how many instruction

bytes (forward or backward) the PC must be moved to get
from current PC value to new PC value
–PC(next) = PC(current) + Offset ;offset is signed (+/-)

• Number of Bytes per Instruction
–sum of instr. op-code and operand bytes

–easy to see in .LST file

• EXAMPLE: What is the hex value of ??
Program op-codes #bytes

LDDA #10 BC 0A 2
STUK INCA 42 1

STAA $10B5 A7 01 B5 3
TSTA 97 1
BNE STUK 26 ?? 2

ASM Programming p.16ECE 331, Prof. A. Mason

BRCLR / BRSET
• Function

–combine test and branch instr.

–can use direct, extended, or indexed addr. mode

• Format
– BRCLR/SET mem mask label

• mem = addr. of data to test

• mask = bits to check (set to 1 if checked)

• label = branch location

–BRCLR: are 1 bits in mask = 0 @ mem?
• if yes, branch to label

–BRSET: are 1 bits in mask = 1 @ mem?
• if yes, branch to label

• EXAMPLE BRCLR 0,X %11110000, NEXT
–compare value @ <IX> with $F0
– if bits 7-4 are ‘0’, then branch to NEXT
–else, advance to next instr.

ASM Programming p.17ECE 331, Prof. A. Mason

Instruction Timing
• All ASM instructions require a specific amount of time to

execute
–can use this information for program timing, e.g., delay loops

• Tinstr Instruction execution time

–N # clock cycles per instruction
• listed under ~* in textbook Appendix A (HO_4)

• N depends on address mode

• EXAMPLE:

– tcycle time of one clock cycle = 1/fclk, where fclk clock frequency
• EXAMPLE:

Tinstr = N tcycle

ASM Programming p.18ECE 331, Prof. A. Mason

Creating Time Delays
• How can a program generate a specific time delay?

1. Use a hardware timer –will be discussed later

2. Construct a software delay loop

• Software delay loop
–EXAMPLE:

–What is the loop delay?

ASM Programming p.19ECE 331, Prof. A. Mason

Creating Time Delays II
–EXAMPLE continued:

–What is the loop delay?

–What is ‘count’ for TD = 2ms?

–What is the maximum delay for this loop code @ fclk = 10MHz?

ASM Programming p.20ECE 331, Prof. A. Mason

Creating Time Delays III
• How can we make a longer loop for longer delay?

1. More instructions(clocks) within the loop

2. Use nested loops

• Nested Loop: Loop within a loop
–EXAMPLE

• Take home exercise:
–How long is a nested lop delay if CNTX & CNTY = $FFFF?

ASM Programming p.21ECE 331, Prof. A. Mason

ASM Loop Examples
Discuss ASM Loop Examples in HO_5, pg. 4-5
• Branches & Reading Assembled List File (Chapter 2), pg. 4

1. Where is the program stored in memory (what addresses)?
2. What is the op-code for the ASM instruction INCB?
3. What value is loaded into index in line 9?
4. What address mode is used to store data to memory in line 12?
5. What is the value of the relative_address_mode offset byte for BEQ in

line 15? Forward or backward?
6. What is the value of the relative_address_mode offset byte for BRA in

line 18? Forward or backward?
7. What does the program do? Where is the main loop (from what line to what line)?
8. What is the purpose of line 14?
9. How many times does copy loop execute? Does the value $16 get copied?
10.Could you explain the purpose and operation of each line in this code?

• Example Loop using For looping structure (pg. 5)

• Also, Simple Looping Code (slide 6)

