
AMS Instruction Execution p.1 2013, Professor A. Mason

ECE
331

HC12/S12 Programmer’s Model

• Programmer’s Model = model of µC useful to view hardware
during execution of software instructions

• Recall: General Microcontroller/Computer Architecture
– note: Control Unit & Register File

CPU

Register
File

ALU

Data Path

Control
Unit

Memory I/O Devices

m-bit address bus

n-bit data bus

control bus

Buses

program data

m n m n

Control
Unit

Register
File

AMS Instruction Execution p.2 2013, Professor A. Mason

ECE
331

HC12/S12 Programmer’s Model

• Programmer’s Model = model of µC useful to view hardware
during execution of software instructions
– focus on Register File & Control Unit of a specific controller

• will be different for each different brand/model of controller

R
eg

is
te

r
F

ile
C

o
n

tr
o

l U
n

it

S X H I N Z V C

A B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

D

IX

IY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2@8-bit Accumulator: A,B

or 1@16-bit Accumulator: D

16-bit Index Register: X

16-bit Index Register: Y

IR 7 . . . 0 Multi-byte Instruction Register
current instruction

16-bit Program Counter
address of next instruction

PC 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SP 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 16-bit Stack Pointer
address of stack

7 0 8-bit Condition Code Register

7 . . . 0 7 . . . 0 7 . . . 0

CCR

AMS Instruction Execution p.3 2013, Professor A. Mason

ECE
331

HC12/S12 Programmer’s Model

• Register File
– store data in/out of memory or ALU
– Accumulators: 2 @ 8-bit OR 1 @ 16-bit

• general purpose storage
– Index Registers: 2 @ 16-bit

• general purpose or in indexed addressing

• Control Unit
– Instruction Register (IR)

• holds current instruction, multi-byte
– Program Counter (PC)

• holds address of next instruction, 16-bit
– Stack Pointer (SP)

• holds address of stack (special block of memory), 16-bit
– Condition Code Register (CCR)

• holds “flag” values generated by last instruction executed, 8-bit
• known as Status Register in other controllers

R
eg

is
te

r
F

il
e

C
on

tr
ol

 U
n

it

A B

15 ‐ 8

7 ‐ 0

D

IX

IY

15 ‐ 8

2@8-bit Accumulator: A,B

or 1@16-bit Accumulator: D

16-bit Index Register: X

16-bit Index Register: Y

IR 7 ‐ 0
Multi-byte Instruction Register: current instruction

16-bit Program Counter: addr. next instruction

PC

SP
16-bit Stack Pointer: address of stack

8-bit Condition Code Register

CCR

7 ‐ 0

7 ‐ 0

7 ‐ 0

15 ‐ 8 7 ‐ 0

7 ‐ 0 7 ‐ 0

15 ‐ 8 7 ‐ 0

15 ‐ 8 7 ‐ 0

S X H I N Z V C7 0

C
en

tr
al

 P
ro

ce
ss

in
g

U
n

it A
 L

 U

AMS Instruction Execution p.4 2013, Professor A. Mason

ECE
331

Condition Code Register

• CCR = register 8 of individually functioning bits
– AKA: Flags Register, Status Register

• ALU Status Flags: each condition tested after each instr. exec.
– C: Carry Flag

• = 1 if carry (addition) or borrow (subtraction) occurs in instr. exec.
– V: Overflow Flag

• = 1 if 2’s complement overflow occurs in instr. exec.
– Z: Zero Flag: =1 if ALU result = 0
– N: Negative Flag: =1 if MSU of ALU result is 1 (i.e., negative in S2C)
– H: Half-Carry Flag: =1 if carry from lower nibble (nibble = ½ byte =4 bits)

CCR S X H I N Z V C7 0

Stop Disable

Half Carry

NegativeInterrupt Mask

Carry/Borrow

Overflow

Zero

External Interrupt Mask BLACK = set by ALU
GRAY = other; covered later

111111_2   nnnnnn SBASBAOverflowC

1

AMS Instruction Execution p.5 2013, Professor A. Mason

ECE
331

CCR Examples

• Instructions & resulting CCR flag status
– 8-bit addition (hexadecimal)

• B7 + 4A

• 07 + F9

• B6 + 9A

• assign each problem to group
of students to evaluate as
TPS exercise

• write answers (C=, V=, etc)
on board before next slide

AMS Instruction Execution p.6 2013, Professor A. Mason

ECE
331

CCR Examples

• Instructions & resulting CCR flag status
– 8-bit addition

• B7 + 4A

• 07 + F9

• B6 + 9A

V (2C overflow) is ALWAYS checked, even if value is not in S2C

AMS Instruction Execution p.7 2013, Professor A. Mason

ECE
331

CCR Examples & Carry Flag Rules

• Instructions & resulting CCR flag status
– 8-bit subtraction (hexadecimal)

• 00 – 17

• Carry Flag (C) Rules
* if A + B (addition), then C = carry_out (Cout)
* if A – B (subtraction), then C = Cout (not_Cout, inverse)

• if A > B, no borrow is needed  C = 0
• if A < B, borrow needed  C = 1

9

AMS Instruction Execution p.8 2013, Professor A. Mason

ECE
331

CCR Example: Carry Flag & Subtraction

• Evaluate: -4 – (-3)
– operation is A – B (subt.)  C = Cout
– A < B  borrow will be needed  C should be 1

Note: in S2C form, the more negative a number is, the “smaller” it is
EX: -4 = 1100 is smaller than -3 (= 1101)

Thus, you can compare A < or > B in normal/decimal or S2C notation

6

AMS Instruction Execution p.9 2013, Professor A. Mason

ECE
331

HC12/S12 Assembly Instructions

• Assembly (ASM) language: programming in the smallest unit
of machine (µC, µP) action

• Example ASM program code

• ASM Instruction Format
– LABEL INSTR_MNEMONIC OPERAND(S) COMMENT
– example:

AMS Instruction Execution p.10 2013, Professor A. Mason

ECE
331

HC12/S12 Assembly Instructions

• ASM Instruction Format
– LABEL INSTR_MNEMONIC OPERAND(S) COMMENT
– example:

• LABEL: identifies location of a line of code
– used by Assembler (compiler); not part of actual instructions
– generally used for looping (jump, branch)
– CHECK is branch location of later instruction (BRA CHECK)

• MNEMONIC: text code for each ASM instruction
– translated by Assembler to a specific instr. “op-code”

• op-code = hex machine code for each ASM instruction
– CMPA is instruction to compare value in accA to operand value

• OPERAND: data/address used by ASM instruction
– function of “addressing mode” (discussed later)
– some instr. don’t have operands
– #$0A is the value accA will be compared to

AMS Instruction Execution p.11 2013, Professor A. Mason

ECE
331

HC12/S12 Assembler Notation

• $ = HEX value
– EX: $12 = 1810

• % = BIN value
– EX: %10 = 210

• none = DEC value
– EX: 12 = 1210

• # denotes a data value (rather than an address)
– EX: ADDA #$A5, adds value $A5 to accA

ADDA $A5, adds value at address $A5 to accA
– illustration to clarify will come soon!

• first need to make things even more complicated 

AMS Instruction Execution p.12 2013, Professor A. Mason

ECE
331

ASM Instructions & Program Assembly

• Example ASM program code

• Program Assembly
– instr._mnemonics converted to HEX op-codes

• So… HEX values can represent
– instruction op-code bytes
– instruction data or operand bytes
– data/instruction address bytes
– and you need to be able to tell which witch is which!

AMS Instruction Execution p.13 2013, Professor A. Mason

ECE
331

Clear As Mud!

• Relationship between Software (instruction) and Hardware
– Program Elements:

• SOFTWARE: location of instr., action to perform, data to act on
• HARDWARE: address, CPU control bits, data bits (or address of data)

• Relationship between Program and Data memory
– all instructions are converted to hex and stored in memory

• Program Memory = block of memory addresses allocated to program bytes
– most instruction act on data and produce results stored in memory

• Data Memory = block of memory addresses allocated to data bytes

• Relationship between Address and Data values
– evaluate:

• #1 + #2 = #3
• #1 + 2 = #6

– no “#” implies an address; value in block 2 is #5, so #1+#5=#6

4
block 1

5
block 2

6
block 3 Address

Data within address

AMS Instruction Execution p.14 2013, Professor A. Mason

ECE
331

68HC12 Expanded Programmer’s Model

• CPU (ALU, Register File, Control Unit) and Memory
– note separate memory allocated for Program and Data

AMS Instruction Execution p.15 2013, Professor A. Mason

ECE
331

Microcontroller Program Development

from concept to action…

A. Write program to complete task
• check syntax; test functionality (Simulator)

B. Assemble program (Assembler)
• ASM code  Machine code (op-codes and operands)

C. Upload program to program memory
D. Run program on Microcontroller

• set PC to start of program memory
1. fetch instruction to IR from program memory
2. decode instruction: set ALU to perform instruction
3. execute instruction: load/store to data memory & register file
• advance PC to next instruction in program memory
• repeat step 1 until commanded to stop

AMS Instruction Execution p.16 2013, Professor A. Mason

ECE
331

Instruction Execution Cycle

• 3 steps of instruction execution cycle
– Fetch: Load instruction byte from program memory into IR
– Decode: Translate op-code to control signals for ALU and Control Unit
– Execute: Pass data through ALU to generate desired result

• Example
1. fetch bytes for LDAA #$00
2. decode: set ALU to load value

#$00 into accA
3. execute: accA contains $00
4. fetch bytes for CMPA #$0A
5. decode: set ALU to compare accA with the value $0A
6. execute: set C/V/N/Z flags (e.g., if accA were $0A, Z1)
7. etc…

AMS Instruction Execution p.17 2013, Professor A. Mason

ECE
331

Instruction Cycle Example

• Code Executed:
– LDAA $3000 (load from $3000)
– STAA $2000 (store to $2000)

• Explaining the instruction execution chart

AMS Instruction Execution p.18 2013, Professor A. Mason

ECE
331

Instruction Cycle Example

• Code Executed:
– LDAA $3000

• (load from $3000)
– STAA $2000

• (store to $2000)

AMS Instruction Execution p.19 2013, Professor A. Mason

ECE
331

HC12 Instruction Set

• Instruction Set: the full set of functional instructions a
µC/µP can execute
– varies with each family of controllers, but generally very similar

• Basic types of instructions (see HO_3)
– Data Transfer/Manipulation

• move data to/from memory; shift/rotate; etc.
– Arithmetic

• add; subtract; increment; decrement; etc.
– Logic & Bit Operations

• Boolean logic; condition flag clears; etc.
– Data Test

– compare/test data & set CCR flags (test for conditional branches)
– Branch

– jump out of program sequence; if-then-else operations
– Function Call (Subroutine)

• start/end subroutines; adjust PC
covered later

in class

AMS Instruction Execution p.20 2013, Professor A. Mason

ECE
331

Reading HO_3

• Information in HO_3 instruction tables
– mnemonic
– description of function
– operation in terms of programmer’s model elements
– CCR flag affects

Mnemonic Function Operation C V Z N
LDAA Load accumulator A A M -- 0  
LDAB Load accumulator B B M -- 0  
LDD Load accumulator D A M, B M+1 -- 0  
LDX Load index register X X M:M+1 -- 0  
LDY Load index register Y Y M:M+1 -- 0  
LDS Load stack pointer (SP) SP M:M+1 -- 0  

Data Transfer/Manipulation
Table A. Load instructions

Memory address (M) defined by instruction operand

all these instructions CLEAR ‘V’ (make 0) and
CHANGE ‘Z’ and ‘N’ based on ALU result

put data into CPU memory (e.g. Register File)

AMS Instruction Execution p.21 2013, Professor A. Mason

ECE
331

2-byte Operations

• Accumulators
– accA is MSBy of accD; accB is LSBy of accD

• Memory operations
– instructions refer to only one 8-bit memory address

• where does 2nd byte come from for 16-bit instructions (e.g., LDX)
– defined/reference memory address (M)  MSBy; M+1  LSBy

16-bit Register (e.g., iX)
MSBy [8:15] LSBy [0:7]

8-bit memory address
M-1
M
M+1
M+2
M+3

e.g., M = $679D
$679C
$679D
$679E
$679F
$67A0

AMS Instruction Execution p.22 2013, Professor A. Mason

ECE
331

Quick Review: HC12 Instructions

Mnemonic Function Operation C V Z N

STAA Store accumulator A A M -- 0  
STAB Store accumulator B B M -- 0  
STD Store accumulator D A M, B M+1 -- 0  

STX Store index register X X M:M+1 -- 0  
STY Store index register Y Y M:M+1 -- 0  
STS Store stack pointer (SP) SP M:M+1 -- 0  

Data Transfer/Manipulation
Table B. Store instructions put data (from CPU) into memory

Mnemonic Function Operation C V Z N
TAB Transfer acc. A to acc. B B A -- 0  
TBA Transfer acc. B to acc. A A B -- 0  
TAP Transfer acc. A to CCR CCR A    
TPA Transfer CCR to acc.A A CCR -- -- -- --
MOVB Mem to Mem: move byte (M)1  (M)2 -- -- -- --
MOVW Mem to Mem: move Word (M:M+1)1(M:M+1)2 -- -- -- --

Table C. Move/transfer instructions copy data to a memory/register

Shift/rotate instructions

Logic shift: input = 0, output to carry_out
Arithmetic shift: shift right puts copy of MSB into MSB
Rotate: input rolls from output (carry_out included)

which is which?

You don’t have to memorize
these. Instruction tables will
always be available to you.
Even on exams!

AMS Instruction Execution p.23 2013, Professor A. Mason

ECE
331

Quick Review: HC12 Instructions

• Arithmetic
– Addition: adds Register with Memory (or Register), stores in Register

• note: A  A+B, but no B  A+B
– Subtraction: subtr. Register with Memory (or Register), stores in Register
– Decrement: subtr. 1 from value in (M, A, B, SP, X or Y)
– Increment: add 1 to value in (M, A, B, SP, X or Y)

• Logic
– AND, OR, XOR, Complement (invert)
– 2’s complement = $00 – A (or B); additive inverse, same as A’+1

• Bit Operations
– Clear CCR flags: C, I, V
– Bit Test; AND’s A (or B) with Memory: application unknown to me 
– Bit Set/Clear

• clears (make 0) or sets (make 1) individual bits of a byte
• can affect 1 or multiple bits
• very useful for defining individual bits of an I/O port
• requires a “mask” byte

AMS Instruction Execution p.24 2013, Professor A. Mason

ECE
331

Masking Concept

• Bit set/clear instructions (BSET, BCLR) [as well as some others
we’ll learn later] use mask bytes.
– Mask byte defines which bits of a byte will be affected by instr.

• other bits will not be changed

• Instruction format
– mnemonic mem_addr mask

– if mask bit = 1  change
– if mask bit = 0  don’t change

• Examples:

BSET/BCLR addr of data bits to set/clr

ASM instruction

because masking is bit-wise operation,
mask bytes often specified in binary

*only operates on Memory; not
on CPU registers or operands

AMS Instruction Execution p.25 2013, Professor A. Mason

ECE
331

BSET/BCLR Examples

• Determine memory value after each instruction
set/clear all bits that are ‘1’ in the mask operand
– BSET $9D %10101010

• value in $9D is $AD = %1010 1101
• bset  $AF

– BSET $67B3 %11100111
• value in $67B3 is $00
• bset  $E7

– BCLR $009E %10000001
• value in $009E is $E2
• bclr $62

– BCLR $009C $9C
• value in $9C is $9C
• mask also $9C = %1001 1100
• bclr $00

INITIAL
addr. value
$009C
$009D
$009E

$67B2
$67B3

$9C
$AD
$E2

$FF
$00

data: 1010 1101
mask: 1010 1010
bset-> 1010 1111

FINAL
addr. value
$009C
$009D
$009E

$67B2
$67B3

$00
$AF
$62

$FF
$E7

data: 0000 0000
mask: 1110 0111
bset-> 1110 0111

red=set, blue=pass

data: 1001 1100
mask: 1001 1100
bclr-> 0000 0000

data: 1110 0010
mask: 1000 0001
bclr-> 0110 0010

red=clr, blue=pass

AMS Instruction Execution p.26 2013, Professor A. Mason

ECE
331

Quick Review: HC12 Instructions

Data Test Instructions
• Compare Data

– compare 2 values by subtracting them
– CCR flags will show <, >, or =

• N will show which was greater

• Z will show if they were equal

• Test Data
– subtracts $00
– CCR flags show if value in tested memory/register is

negative (N) or zero (Z)

EX: CBA  Compare A=$5D to B=$37
 A – B  $5D - $37
 N = 0  A > B (subtraction not negative)

Compare: C= , V=, Z=, N=

Test: C= 0, V=0, Z=, N=

AMS Instruction Execution p.27 2013, Professor A. Mason

ECE
331

Address Modes

• 68HC12 has six (6) addressing modes
– addressing modes define how data is associated with an instruction
– Inherent: instruction requires no data form outside the CPU

• EX: ABA {A  A+B} or INX {increment iX by 1}
• inherent instructions have no operands

– all needed data within CPU registers
– Immediate: data value is in operand (not in memory)

• easily identified by having a # in the operand
• EX: LDAA #$F3 {put $F3 into accA} or ANDA #$2C

– Extended: data for instruction is in memory
• 2-byte operand specifies memory address
• EX: LDAB $20B4 {put value in $20B4 into accB; B  <$20B4>}

– Direct: data for instruction is in memory with 1-byte address
• special case of Extended

– used for addresses $0000 – $00FF (256 bytes), where MSBy is $00
– saves program bytes and execution time; eliminates 1 operand value
– addresses $00–$FF largely used by configuration registers (control I/O functions)

• EX: ADDA $E3 {A  A+<$00E3>}

remaining 2 modes
are more

complicated and will
be covered later

<..> notation means the
value at this mem. addr.

AMS Instruction Execution p.28 2013, Professor A. Mason

ECE
331

Address Modes

Identify the address mode for each of the following instructions
– Inherent, Immediate, Direct, Extended

– LDAB #$4F
– STAA $8D2C
– ABA
– LDX #$8D2C
– STY $8D2C
– INCB
– ANDA $C6
– TAB
– LSL $F0
– SUBD $8D2C
– ADDD #$0750

Immediate

Direct

Extended

Inherent

Inherent

Inherent
Immediate

Immediate

Extended

Extended
Direct

AMS Instruction Execution p.29 2013, Professor A. Mason

ECE
331

Quiz 1 Topics

• Following topics should be studied for Quiz 1
– ECE230 review

• base conversion
• S2C form and conversions
• Boolean logic; DeMorgan’s rules
• flip-flop/register operation

– Microcontroller architecture; structure & name/function of blocks
– 68HC12 programmers model
– CCR bits; setting after hexadecimal math
– 68HC12 instruction format & execution cycle
– masking concept: BSET/BCLR instructions
– 68HC12 address modes: the simple ones (INH, IMM, DIR, EXT)

AMS Instruction Execution p.30 2013, Professor A. Mason

ECE
331

Instruction Register Chart

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

Initial Values

$2100

$A2 $4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

A

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

INCB

$2100

$A2 $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

B
Increment B

(B  B+1)

Inherent

$4C

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

Initial Values

$2100

$A2 $4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

A

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

ABA

$2100

$4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

B
Add B to A
A2

+4B
=ED

Inherent

$ED

AMS Instruction Execution p.31 2013, Professor A. Mason

ECE
331

Instruction Register Chart

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

Initial Values

$2100

$A2 $4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

A

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

LDX #$8000

$4B$A2 $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

B

$8000

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

Initial Values

$2100

$A2 $4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

A

aA aB

IX

IY

SP

PC

CCR
M

em
o

ry
address value

Action: _______________________

H N Z V C

ANDA #$4C

$2100

$4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

B
AND aA w/ M
(A2)(4C)

A2 = 1010 0010
4C = 0100 1101

0000 0000

Immediate

$00

Immediate

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

ABX Add B to iX

$4B$A2 $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

C

$804B

Inherent

AMS Instruction Execution p.32 2013, Professor A. Mason

ECE
331

Instruction Register Chart

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

Initial Values

$2100

$A2 $4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

A

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

LDX $60

$4B$A2 $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

B
Load iX from M (60)
Direct

$2000

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

LDAA $C7

$2000

$4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

C
Direct

$FF aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

STAA $2001

$2000

$4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

D

$FF

Extended

$FF

AMS Instruction Execution p.33 2013, Professor A. Mason

ECE
331

Instruction Register Chart: CCR Flags

aA aB

IX

IY

SP

PC

CCR
M

em
o

ry
address value

Action: _______________________

H N Z V C

INCB

$2100

$A2 $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

B

$4CaA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

ABA

$2100

$4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

B

$ED

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

ANDA #$4C

$2100

$4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

B

$00

A

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

LDX #$8000

$4B$A2 $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

B

$8000

0 1 0 0 0 - 0 0 x -

- 0 1 0 - - 1 0 0 -

AMS Instruction Execution p.34 2013, Professor A. Mason

ECE
331

Instruction Register Chart: CCR Flags

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

LDX $60

$4B$A2 $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

B

$2000

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

LDAA $C7

$2000

$4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

C

$FF aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

STAA $2001

$2000

$4B $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

D

$FF

$FF

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

ABX Add B to iX

$4B$A2 $20
$00
$FF
$31
$5E
$20

$1000

$0060
$0061
$00C7
$2000
$2001
$2002

ignore

ignore

C

$8048

0 1 0 0 0 - 0 0 0 -

- 1 0 0 - - 1 0 0 -

AMS Instruction Execution p.35 2013, Professor A. Mason

ECE
331

Indexed Address Mode

• Indexed: instruction data is in memory at address
specified relative to (offset from) a reference address
that is stored in a CPU register
– reference address can be in iX, iY, SP, or PC
– offsets are signed number  can offset forward or backward
– useful for accessing a list of data beginning (or ending) at the

reference address
• Several varieties of indexed addressing in HC12 ASM

– we will only study Indexed-Immediate
– others covered in textbook and HO_3

block of memory

reference
CPU register

ex: addr.
6015
6016
6017
6018
6019
601A
601B
601C
601D
601E

6017 of
fs

et

index 6017

$XX

AMS Instruction Execution p.36 2013, Professor A. Mason

ECE
331

Indexed-Immediate Addressing

• Indexed-Immediate
– reference address in iX, iY, SP, or PC
– offset address in operand

• just like Immediate address mode has data in operand

• Format: MNEMONIC offset,reference
• Example: LDX #$6017

LDAA $05,X {accA  <$B5+<iX>>}
• accA loaded with value in memory at addr ($65 + value in iX)

block of memory

reference

ex: addr.
6015
6016
6017
6018
6019
601A
601B
601C
601D
601E

6017$AAaccA iX
target of

instruction

of
fs

et

1
2
3
4
5

index 6017

$27

$27

• note: value at index, < <iX> >, is irrelevant
– unless instr. was LDAA $00,X

AMS Instruction Execution p.37 2013, Professor A. Mason

ECE
331

Indexed Immediate Addressing

• Example
– LDY #$5000
– ADDA $4C,Y

memory block

reference

addr.
5000
5001
5002
5003
. . .
504A
504B
504C
504D
504E

accA
accB

iX
iY

INITIAL

$21
$80

$2000
$5000

B3
28
52
00
. . .
50
4B
1A
04
5E

memory block

reference

addr.
5000
5001
5002
5003
. . .
504A
504B
504C
504D
504E

accA
accB

iX
iY

FINAL

$3B
$80

$2000
$5000

B3
28
52
00
. . .
50
4B
1A
04
5E

A  A + M,
M = <$4C + <iY> >
M = $504C
A  $21 + $1A
A  $3B

accA
accB

iX
iY

4

$FC
$80

$2000
$5001

accA
accB

iX
iY

3

$D4
$80

$2000
$5001

accA
accB

iX
iY

2

$D4
$80

$2000
$5000

• Example (same memory as above)
1) LDY #$5000
2) ADDA 0,Y
3) INY
4) ADDA $0,Y

accA
accB

iX
iY

1

$21
$80

$2000
$5000

• can add a series of
numbers like this

• reload Y to move to
another set

AMS Instruction Execution p.38 2013, Professor A. Mason

ECE
331

Instruction Register Chart

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

Initial Values

$2100

$A2 $01 $2C
...
$31
$00
...
$20
$BE

$1000

$00F0
. . .

$3011
$3012
. . .

$301A
$3109

ignore

ignore

A

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

LDX $3011

$A2 $01 $2C
...
$31
$00
...
$20
$BE

$1000

$00F0
. .

$3011
$3012
. . .

$301A
$3109

ignore

ignore

B Add B to A
A2

+4B
=ED

aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

ORAB #$F0

$3100

$2C
...
$31
$00
...
$20
$BE

$1000

$00F0
. .

$3011
$3012
. . .

$301A
$3109

ignore

ignore

C which is right?

OR aA & <F0>
A2 OR 2C

OR aB & <F0>
01 OR 2C

OR aB & F0
01 OR F0

$3011$3100

$A2 $F1 aA aB

IX

IY

SP

PC

CCR

M
em

o
ry

address value

Action: _______________________

H N Z V C

STAB $09,X

$3100

$2C
...
$31
$00
...
$20
$BE

$1000

$00F0
. .

$3011
$3012
. . .

$301A
$3109

ignore

ignore

D
which is right?
aA + 09  iX
aB + 09  iX
aB  $3011+$09
aB  $3100+$09
aB  $3100+<$09>

$A2 $F1

$F1

AMS Instruction Execution p.39 2013, Professor A. Mason

ECE
331

HC12 Compiler Directives

• Directive: command to compiler; makes coding easier
• HC12 ASM Directives (see HO_3)
EQU equates symbol with numeric valve

-use to define memory location or constant
-assembler replaces label with correct # value

EX: LIST EQU $5B
defines variable ‘LIST’ = $5B

ORG origin: set memory addr. of instructions/data
that follow
-all programs must specify their ORG

EX: TOP ORG $6000
sets program origin at $6000

END set end of program
-any ASM instructions following END are ignored
-can have directives after END

AMS Instruction Execution p.40 2013, Professor A. Mason

ECE
331

HC12 Compiler Directives

• Directive: command to compiler
• HC12 ASM Directives (see HO_3)
FCB form constant byte

-reserves block of memory & initiates contents
of reserved block

EX: ABC FCB $11, $12, $13
reserves 3 bytes w/ valves $11, $12 & $13 at
addr. assigned to label ABC

FDB form double-byte
-same as FCB but 2 bytes per operand

FCC form constant character
-stores ASCII code for alphanumeric characters enclosed in " " symbols

EX: NAME FCC “MIKE”
stores 4 ASCII bytes for MIKE

RMB reserve block of memory
EX: TEMP RMB $10
reserves 16 ($10) bytes starting at addr. assigned to label TEMP

AMS Instruction Execution p.41 2013, Professor A. Mason

ECE
331

Assembly Process

Assembly Process: The process of converting ASM code into executable
machine code.

• Input
– .ASM (text file)

• Outputs
– .LST

• compiled code
• program addresses & op-codes

– .S19 record
• HEX file that can be uploaded to C

to store program to memory
• Testing paths

– Simulator
– Test on hardware

AMS Instruction Execution p.42 2013, Professor A. Mason

ECE
331

Assembly Process Example

