

cannot respond to exceptions in normal program flow

Example:

- Exceptions = break in normal program flow
 - <u>2 Types</u>
 - Resets:

Example:

Interrupts:

Example:

Reset Response

When a reset occurs...

For <u>external resets</u>

program starts over from beginning

- For internal resets (COP & Clock Monitor)
 - specific "reset vector" immediately stored to the PC
 - jump to user code (@ reset vector)
 - reset vector
 - a preset memory address assigned to each exception event
 - contains address of user-defined code to manage exception event

See "exception vector" tables at end of slides

ECE 331, Prof. A. Mason

Exceptions-Interrupts p.5

Interrupts

Purpose

permit MCU to respond to events of higher priority than the normal program

Cause

- signal or event causing a break in normal program flow
- Action
 - jump to "interrupt vector" (like reset vector)
 - "interrupt vector" points to specific subroutine for each interrupt event
- Alternative to Interrupts
 - Polling: code continuously monitors for event (e.g., hardware flag) to occur; can't do anything else except wait for event

Types of Interrupts

Maskable

- interrupt can be enabled/disabled by software programmable hardware settings
 - e.g., configuration registers (register set)

Non-Maskable

- interrupt request always honored; can not be turned off by user
- useful for critical events
 - e.g., power down for batter level low

ECE 331, Prof. A. Mason

Exceptions-Interrupts p.7

HC12/S12 Interrupt System

Non-Maskable Interrupts Indicator/Control SXHINZV CCR С active when CCR bit X is '0' Stop Disable Carry/Borrow **External Interrupt Mask** Overflow not controllable by user Half Carry Zero Events Interrupt Mask Negative Unimplemented Instruction Trap for unassigned op-codes Software Interrupt Instruction (SWI) ASM instruction Nonmaskable Interrupt Request (XIRQ) active low external pin on MCU

HC12/S12 Interrupt System

- Maskable Interrupts
- Control/Indicator
 - master "mask" (on/off switch): CCR bit I (I = inhibit)
 - @ system reset, I = 1 (off)
 - CLI instruction \rightarrow I = 0 (turns maskable interrupt system on)
 - CLI =
 - SEI instruction \rightarrow I = 1 (turns maskable interrupt system off)
 - SEI =
- Local Masks
 - MCU hardware system interrupts are enabled by local masks
 - e.g., TOI bit in the timer system enables timer interrupts

	Master mask	Local masks	
STATE		ECE 331, Prof. A. Mason	Exceptions-Interrupts p.9

HC12/S12 Maskable Interrupts

- Maskable Interrupt Request (IRQ)
 - external pin, active low
 - primary external interrupt
 - can be configured for multiple interrupt sources
- Real-Time Interrupt (RTI)
 - periodic interrupt, programmable duration
 - Example:
- Timer Overflow
 - enabled by TOI bit (in configuration register)
- Analog to Digital System
 - create interrupt when A/D conversion complete
- Serial Communication System
 - several maskable interrupts
- Many more...
 - see complete list in exception vector list (end of slides)

Interrupt Response

Exception Priority

68HCS12 Exception Vector Locations

Vector Address	Interrupt Source	CCR Mask	Local Enable	HPRIO Value to Elevate
\$FFFE, \$FFFF	Reset	None	None	-
\$FFFC, \$FFFD	Clock Monitor fail reset	None	PLLCTL (CME, SCME)	-
\$FFFA, \$FFFB	COP failure reset	None	COP rate select	-
\$FFF8, \$FFF9	Unimplemented instruction trap	None	None	-
\$FFF6, \$FFF7	SWI	None	None	-
\$FFF4, \$FFF5	XIRQ	X-Bit	None	-
\$FFF2, \$FFF3	IRQ	I-Bit	IRQCR (IRQEN)	\$F2
\$FFF0, \$FFF1	Real Time Interrupt	I-Bit	CRGINT (RTIE)	\$F0
\$FFEE, \$FFEF	Enhanced Capture Timer channel 0	I-Bit	TIE (C0I)	\$EE
\$FFEC, \$FFED	Enhanced Capture Timer channel 1	I-Bit	TIE (C1I)	\$EC
\$FFEA, \$FFEB	Enhanced Capture Timer channel 2	I-Bit	TIE (C2I)	\$EA
\$FFE8, \$FFE9	Enhanced Capture Timer channel 3	I-Bit	TIE (C3I)	\$E8
\$FFE6, \$FFE7	Enhanced Capture Timer channel 4	I-Bit	TIE (C4I)	\$E6
\$FFE4, \$FFE5	Enhanced Capture Timer channel 5	I-Bit	TIE (C5I)	\$E4
\$FFE2, \$FFE3	Enhanced Capture Timer channel 6	I-Bit	TIE (C6I)	\$E2
\$FFE0, \$FFE1	Enhanced Capture Timer channel 7	I-Bit	TIE (C7I)	\$E0
\$FFDE, \$FFDF	Enhanced Capture Timer overflow	I-Bit	TSRC2 (TOF)	\$DE
\$FFDC, \$FFDD	Pulse accumulator A overflow	I-Bit	PACTL (PAOVI)	\$DC
\$FFDA, \$FFDB	Pulse accumulator input edge	I-Bit	PACTL (PAI)	\$DA
\$FFD8, \$FFD9	SPI0	I-Bit	SP0CR1 (SPIE, SPTIE)	\$D8
\$FFD6, \$FFD7	SCIO	I-Bit	SC0CR2 (TIE, TCIE, RIE, ILIE)	\$D6
\$FFD4, \$FFD5	SCI1	I-Bit	SC1CR2 (TIE, TCIE, RIE, ILIE)	\$D4
\$FFD2, \$FFD3	ATD0	I-Bit	ATD0CTL2 (ASCIE)	\$D2
\$FFD0, \$FFD1	ATD1	I-Bit	ATD1CTL2 (ASCIE)	\$D0
\$FFCE, \$FFCF	Port J	I-Bit	PTJIF (PTJIE)	\$CE
\$FFCC, \$FFCD	Port H	I-Bit	PTHIF(PTHIE)	\$CC
\$FFCA, \$FFCB	Modulus Down Counter underflow	I-Bit	MCCTL(MCZI)	\$CA

ECE 331, Prof. A. Mason

Exceptions-Interrupts p.15

68HCS12 Exception Vector Locations

\$FFC8, \$FFC9	Pulse Accumulator B Overflow	I-Bit	PBCTL(PBOVI)	\$C8
\$FFC6, \$FFC7	CRG PLL lock	I-Bit	CRGINT(LOCKIE)	\$C6
\$FFC4, \$FFC5	CRG Self Clock Mode	I-Bit	CRGINT (SCMIE)	\$C4
\$FFC2, \$FFC3	BDLC	I-Bit	DLCBCR1(IE)	\$C2
\$FFC0, \$FFC1	IIC Bus	I-Bit	IBCR (IBIE)	\$C0
\$FFBE, \$FFBF	SPI1	I-Bit	SP1CR1 (SPIE, SPTIE)	\$BE
\$FFBC, \$FFBD	SPI2	I-Bit	SP2CR1 (SPIE, SPTIE)	\$BC
\$FFBA, \$FFBB	EEPROM	I-Bit	EECTL(CCIE, CBEIE)	\$BA
\$FFB8, \$FFB9	FLASH	I-Bit	FCTL(CCIE, CBEIE)	\$B8
\$FFB6, \$FFB7	CAN0 wake-up	I-Bit	CANORIER (WUPIE)	\$B6
\$FFB4, \$FFB5	CAN0 errors	I-Bit	CAN0RIER (CSCIE, OVRIE)	\$B4
\$FFB2, \$FFB3	CAN0 receive	I-Bit	CANORIER (RXFIE)	\$B2
\$FFB0, \$FFB1	CAN0 transmit	I-Bit	CANOTIER (TXEIE2-TXEIE0)	\$B0
\$FFAE, \$FFAF	CAN1 wake-up	I-Bit	CAN1RIER (WUPIE)	\$AE
SFFAC, SFFAD	CAN1 errors	I-Bit	CAN1RIER (CSCIE, OVRIE)	\$AC
SFFAA, SFFAB	CAN1 receive	I-Bit	CAN1RIER (RXFIE)	\$AA
\$FFA8, \$FFA9	CAN1 transmit	I-Bit	CAN1TIER (TXEIE2-TXEIE0)	\$A8
\$FFA6, \$FFA7	CAN2 wake-up	I-Bit	CAN2RIER (WUPIE)	\$A6
\$FFA4, \$FFA5	CAN2 errors	I-Bit	CAN2RIER (CSCIE, OVRIE)	\$A4
\$FFA2, \$FFA3	CAN2 receive	I-Bit	CAN2RIER (RXFIE)	\$A2
\$FFA0, \$FFA1	CAN2 transmit	I-Bit	CAN2TIER (TXEIE2-TXEIE0)	\$A0
\$FF9E, \$FF9F	CAN3 wake-up	I-Bit	CAN3RIER (WUPIE)	\$9E
\$FF9C, \$FF9D	CAN3 errors	I-Bit	CAN3RIER (TXEIE2-TXEIE0)	\$9C
\$FF9A, \$FF9B	CAN3 receive	I-Bit	CAN3RIER (RXFIE)	\$9A
\$FF98, \$FF99	CAN3 transmit	I-Bit	CAN3TIER (TXEIE2-TXEIE0)	\$98
\$FF96, \$FF97	CAN4 wake-up	I-Bit	CAN4RIER (WUPIE)	\$96
\$FF94, \$FF95	CAN4 errors	I-Bit	CAN4RIER (CSCIE, OVRIE)	\$94
\$FF92, \$FF93	CAN4 receive	I-Bit	CAN4RIER (RXFIE)	\$92
\$FF90, \$FF91	CAN4 transmit	I-Bit	CAN4TIER (TXEIE2-TXEIE0)	\$90
\$FF8E, \$FF8F	Port P Interrupt	I-Bit	PTPIF (PTPIE)	\$8E
\$FF8C, \$FF8D	PWM Emergency Shutdown	I-Bit	PWMSDN (PWMIE)	\$8C
\$FF80 to \$FF8B	Reserved			

ECE 331, Prof. A. Mason