# ECE 331: NO ECE230 Review 

Professor Andrew Mason<br>Michigan State University Spring 2013

## Opening Remarks

- Announcements
- HW1 due next Mon
- Labs begin in week 4
- No class next-next Mon -MLK Day


## Questions?

- ECE230 Review HO_0 posted on web
- Anyone need a syllabus?
- Today's Objectives
- Perform number base conversions for Dec, Hex, Bin
- Identify value range as function of number of bits; identify out of range overflow for signed and unsigned binary numbers
- Express numbers in signed 2's complement (S2C) form, perform 2 's complement operation, and evaluate subtraction using S2C.
- Identify value range in S2C and determine 2C overflow
- Perform minimization of logic expressions using min/max terms, K-maps, and Boolean arithmetic


## Homework Guidelines

- Be neat!
- should represent a professional work product
- Show work
- Clearly indicate answers
- Give units in answer
- Grading
- effort more than results
- may not be "corrected" but solutions will be posted
- Homework Questions
- come to office hours!


## Number Systems

- Digital Bases
- Decimal (Dec), base 10
- Binary (Bin), base 2
- Hexadecimal (Hex), base 16
- Base Conversions
- $\operatorname{Bin} \rightarrow D e c$

EX
${\underset{8421}{10102} \rightarrow ?_{10}, 1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2_{1}^{0} .}_{2}$ $=8+0+2+0=1010$

- Hex $\rightarrow$ Dec

Ex $2 E B 5_{16} \rightarrow$ ? 10
show work! $=2 \times 16^{3}+\frac{14}{E} \times 16^{2}+1{ }^{11} \times 16+5$

- $\operatorname{Bin} \rightarrow \mathrm{Hex} \downarrow$
use calculator $=2(4096)+14(256)+11(16)+5$
Ex $101101001101_{2}=?_{16}$
$\begin{array}{ccccc}\text { group by } 4 & 1011 & 0100 & 1101 \\ \text { from LSB } & 1821 & 4 & 84 \\ & 11 & 4 & 13\end{array}$


## TPS: Convert 111101101 to hex.

## Binary Addition

DEMO: using PC Calculator to check conversions \& math

- only for checking answers!
- always show work in homework
- Addition Examples

| Decimal |  | Binary |  | Hex |
| :---: | :--- | ---: | :--- | :---: |
| 7 | $7 \rightarrow 0111$ | 0111 | $0111_{2} \rightarrow 7_{16}$ | 7 |
| +4 | $4 \rightarrow 0100$ | $\frac{+0100}{1011_{2}}$ | $0100_{2} \rightarrow 4_{16}$ | $\frac{+4}{1_{10}}$ |


| Decimal |  | Binary |  | Hex |
| :---: | :--- | ---: | :--- | :---: |
| 7 | $7 \rightarrow 0111$ | 0111 | $0111_{2} \rightarrow 7_{16}$ | 7 |
| $\frac{+9}{16_{10}}$ | $9 \rightarrow 1001$ | $\underline{+1001}$ | $1001_{2} \rightarrow 9_{16}$ | $\frac{+9}{10000_{2}}$ |

- Value Range
- $n$ unsigned binary bits can only express values 0 to $2^{n-1}$
- nunsigned hex bit express values 0 to $16^{n-1}$
- larger values generate "overflow" $\rightarrow$ carry_out bit


## Binary Subtraction

- Microprocessors do not subtract, they only add!
- 2's Complement $=2 C$
- $X-Y=X+(-Y)=X+[Y]^{\star}$, where []$^{*}$ means 2's complement
- read extensive notes in HO_Oa
- To subtract...
- use numbers in signed 2's complement (S2C) form
- use 2C operation to negate subtracted/negative values
- then ADD

EX: Evaluate 5-3 using 4-bit S2C \#'s

$$
\begin{aligned}
& \frac{5}{-3} \rightarrow-0101 \\
& ?
\end{aligned} \xrightarrow{2 c} 1100+1 \xlongequal{\frac{10101}{1101}} \frac{10010}{}
$$

## 2's Complement Overflow

EX: Evaluate -7-6 using 4-bit S2C \#'s

$$
\begin{aligned}
& -7 \\
& \frac{-6}{?}
\end{aligned} \rightarrow-0111 \stackrel{2 c}{\rightarrow} 1001
$$

sign bit $0=+$ (positive)
carry_out, ignore for subtraction
but does $-7-6=3$ ? No! should $=-13$

- -13 is out of range for 4-bit S2C \#
- 2's Complement Overflow: when result of arithmetic is outside the value range of $n$-bit signed binary number
- Signed binary range: -2n-1 to $2^{n-1}-1$
- Detecting 2C Overflow: only overflow if sign of both numbers is same \& is opposite sign of addition result

$$
\text { Overflow }=\overline{A_{n-1}} \cdot \overline{B_{n-1}} \cdot S_{n-1}+A_{n-1} \cdot B_{n-1} \cdot \overline{S_{n-1}}
$$

## Arithmetic with 2C Overflow

EX: Evaluate using 3-bit S2C \#'s, detect $2 C$ overflow

- 2C Overflow?
- sign of both \#s (at addition) = 0
- sign of result $=1$ (opposite of 0 )
$\rightarrow$ 2C overflow!
- More examples in HO_Oa


## Bin/Hex Math Examples

EX: Evaluate using 4-bit S2C \#'s, detect 2C overflow

$$
\begin{aligned}
& \begin{array}{l}
0110 \\
-1110
\end{array} \rightarrow \begin{array}{l}
0110 \rightarrow 0110 \\
0[001+1]+0010 \\
1000
\end{array} \rightarrow \frac{+6}{8} \leftarrow+\text { nomarch } \\
& \rightarrow-[11+1]=-8
\end{aligned}
$$

- meets conditions for $2 C$ overflow, so answer is not reliable


## EX: Evaluate using 4-bit S2C \#'s, check answer

$E_{5} \rightarrow 11100101$
-EA $\rightarrow-11101110 \rightarrow+[1101110]^{*}=0010001+1=0010010$
$\begin{gathered}1110 \text { or } 01 \\ 00010010\end{gathered} \longrightarrow-(0011011)=-(16+11)=-27$
$-27$
$\frac{-(-18)}{-9}$

## Logic Minimization

- Often need to reduce a complex logic expression to it smallest form (i.e., fewest number of logic operations)
- Methods of logic minimization
- Boolean arithmetic using Boolean properties
- EX $F=\bar{X} \cdot \bar{Y} \cdot Z+\bar{X} \cdot \bar{Y} \cdot \bar{Z}=\bar{X} \cdot \bar{Y} \cdot(Z+\bar{Z})=\bar{X} \cdot \bar{Y}$
- Karnaugh maps
- EX: Find the minimal SoP expression for $F=\sum_{X Y Z}(1,2,5,7)$

- then reduce using Boolean arithmetic
$F=X Z+Y^{\prime} Z+X^{\prime} Y Z{ }^{\prime}=Z\left(X+Y^{\prime}\right)+X^{\prime} Y Z^{\prime}$ is the minimal form.


## Basic Combinational Logic Gates

- INV
- AND
- NAND
- OR
- NOR
- inversion "bubbles"



| A B |  | $A \cdot B, A+B, A+B$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 0 |  | 0 | 1 |
| 01 | 0 | 1 | 1 | 0 |
| 10 | 0 | 1 | 1 | 0 |
| 11 | 1 | 0 | 1 | 0 |

## More Combinational Logic

- MUX: select 1 from many
- example 4:1 MUX
- Buffer: signal isolation \& drive

|  |  | Y |
| :---: | :---: | :---: |
| ${ }^{2} \mathrm{P}_{1}-\mathrm{Y}$ | 00 | $\mathrm{P}_{0}$ |
| $\stackrel{\rightharpoonup}{2}$ | 01 | $\mathrm{P}_{1}$ |
| - | 10 | $\mathrm{P}_{2}$ |
| selects | 11 | $\mathrm{P}_{3}$ |

- inverter without the inversion
$A-O-Y=A$
$A-Y=A$
- Tri-State (buffer/inverter)
- buffer (or inverter) with disable (high impedance) state


| en A | Y |  |
| :---: | :---: | :---: |
| 00 | hi Z | high impedan ce |
| 01 | hi $Z$ | = open circuit |
| 10 | 0 | $Y=A w h$ |
| 11 | 1 | en-1 |




## And More...

- XOR \& NOR
- true of both different (XOR) or both same (XNOR) XOR

xor


| A | B | $\mathrm{A} \pm \mathrm{B}$ | $\overline{\mathrm{A} \pm \mathrm{B}}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |

- Decoder
- only one "active" output
- example 4:1 decoder
- difference from MUX?
- active low concept


| $s_{1}$ | $s_{0}$ | $Y_{3} Y_{2} Y_{1} Y_{0}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 |  |  |
| 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 |  |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |

## Sequential Logic \& Latch

- Sequential logic
- difference from combinational?
- output based on input value at prior time
- Latch
- 2-state storage circuit
- can "hold" data
- bi-stable circuit
- D-type latch


- D-type latch w/ enable
- SR latch


| $\mathbf{S}$ | $\mathbf{R}$ | Action |
| :--- | :--- | :--- |
| 0 | 0 | $Q_{1}=Q_{0}$ |
| 0 | 1 | $Q_{1}=0$ |

 | en $D$ | $a_{1}$ |  |
| :--- | :--- | :--- |
| 0 | 0 | $a_{0}$ |
| 0 | 1 | $a_{0}$ |
| 1 | 0 | 0 |
| 1 | 1 | 1 |



| 1 | 0 | $Q_{1}=1$ |
| :--- | :--- | :--- |
| 1 | 1 | restricted |

## Flip Flop

- Flip flop is a synchronous circuit
- which means?
- D-type master-slave flip flop
- latch level


- JK flip flop
- Toggle flip flop
- Convertability


State tables for D-type, JK, and T-type flip flops

## Flip Flop Timing Diagrams

- Timing diagram: map of digital output (\& input) vs. time
- use state table to find output
- look at proper clock transition
- ignore input changes outside clock transitions

- Rising- vs. falling-edge triggered
- triggered by clock
- rising = positive = "up"
- falling = negative $=$ "down"



## Registers

- Data registers
- stores block (byte/word) of digital data
- composed of flip flops; used as static memory
- example: 4b parallel-in parallel-out register
- Shift register
- can move data laterally between register bits
- can input or output (or both) data serially
- example: 4b serial-in parallel out shift register



## Shift \& Rotate

- Shift
- move each bit (left or right) to adjacent register, load in preset value (normally 0 ) into open registers
- Rotate
- move each bit (left or right) to adjacent register, rotate exiting bits back into other side of register

- Example:
- shift right by 2
- rotate left by 1


MIAT!

## DeMorgans \& Complete Set

- DeMorgans Relations

$$
\begin{array}{ll}
\bar{A} \cdot B=\bar{A}+\bar{B} & A-\square-\bar{A} \cdot B=\begin{array}{l}
A-\square \\
B-D \\
A
\end{array} \bar{A}+\bar{B} \\
\overline{A+B}=\bar{A} \cdot \bar{B} & A-\square b-\overline{A+B}=\bar{A}-\square-\bar{A} \cdot \bar{B}
\end{array}
$$

- Complete Set Concept
- all logic functions can be implemented with ONLY NAND (or ONLY NOR)
- example: INV with NAND

- similarly, can make AND, OR, NOR with only NAND


## Logic Schematic Manipulation

- Bubble pushing technique
- bubbles can be moved from input of a gate to the output of an attached gate (or from output to input)
- 2 bubbles can be added to any node (like double negative)
- Example: convert to all NANDs using DeMorgans \& bubble pushing
- initial F
- bubble pushing
- DeMorgans
- final


