
ECE 331 Rev. S12

 p. 1

Lab 9: On-Board Time Generation and Interrupts

Summary:
Develop a program and hardware interface that will utilize externally triggered interrupts and the on-
board timer functions of the 68HC12.

Learning Objectives:

• Learn to use the on board timer system of the 68HC12.
• Practice the use of interrupts.

Resources and Supplies:

• CML12S-DP256 development board
• CML12S-DP256 MON12 Manual
• PC with WinIDE Development Environment and MON12 monitor program

Important Reminders:

• It is your responsibility to save the programs you create.
• Pre-lab assignments must be completed before coming to the lab.

Background:

68HCS12 Free Running Counter System
The free running counter of the 68HCS12 provides timing functions. The MCU configuration
registers relevant to the free running counter system are listed in the table below along with their
register addresses. TCNT is the 16-bit counter. Bit 7 of the TSCR register holds the timer enable
(TEN). Setting TEN to ‘1’ turns on the timer and resets the value in TCNT. Bit 7 of the TFLG2
register contains the time overflow (TOF), which goes high when TCNT rolls over, changing from
$FFFF to $0000. Bits 2-0 of the TSCR2 register contain the 3-bit binary-encoded counter clock
prescale factor (PR) that reduces the timer clock frequency by the encoded PR value. PR = 001
means scale by 2, 010 scale by 4, 011 scale by 8, etc. For this lab, you should set PR to %101
which will scale the clock by a factor of 32 and should results in a timer clocking frequency of
8MHz/32 = 256kHz. Remember, it is best to use BSET/BCLR instruction to set/clear control bits
rather than store instructions.

Register Name 68HCS12 Register
Address

Important Bits
Name (bit #)

TCNT $0044-45 all
TSCR $0046 TEN (7)
TFLG2 $004F TOF (7)
TSCR2 $004D PR (2:0)

IRQ Interrupt Configuration.
Master control of all maskable interrupts (like IRQ’) is provided by a master mask (switch) that is by
ASM instructions. The status of this mask is indicated by the CCR bit I. Instruction SEI sets the
master mask (I = 1) turning off the maskable interrupt system (engaging the mask). CLI clears the
master mask (I = 0) turning on the maskable interrupt system (disengaging the mask). When the
maskable interrupt system is enabled (I = 0), individual maskable interrupts can then be enabled
and used as interrupt sources. During coding and debugging, pay careful attention to the status of
the CCR-I bit and turn the system on/off as needed.

ECE 331 Rev. S12

 p. 2

The maskable interrupt signal, IRQ, is controlled by the IRQCR register. Bit 7 (IRQE) is the select
edge sensitivity bit. By default it is ‘0’ for a negative-edge triggered interrupt. Setting it to ‘1’ would
make IRQ positive edge triggered. Bit 6 (IRQEN) enables the IRQ interrupt when set to ‘1’. The
remaining bits are unused. Storing a value of #$40 to IRQCR would enable an active low IRQ
interrupt. You can also use BSET/BCLR instructions.

Register Name 68HCS12 Register
Address

Important Bits
Name (bit #)

IRQCR $001E IRQE (7), IRQEN (6)

Note you must use the clear interrupt mask (CLI) instruction to enable before turning on any
individual maskable interrupts, like the IRQ. The SEI instruction will allow you to set the CCR-I bit.

The interrupt vector address for the IRQ service routine is ($3FF2, $3FF3). This is remapped from
the standard address ($FFF2, $FFF3) by the MON12 monitor program. The address for your IRQ
service routine must be stored to this interrupt vector. You can achieve this using labels in your
code without knowing the actual address of the service routine, or you can assign your service
routine to a specific address and then store this address to the IRQ interrupt vector.

Port K: LEDs and Buzzer
As used in previous labs, four LEDs are attached to the lower nibble of Port K (PK0 – PK3). To
control the LEDs, you must set these pins as outputs on the data direction register. Setting a
value of ‘1’ to any of these port pins will turn on the respective LED.

An audio buzzer on the project board is attached to the 6th bit of Port K (PK5). If Port K is set as
an output port, then setting PK5 will turn on the buzzer and clearing PK5 will turn it off. In order
to hear the buzzer, a small delay will be needed between turning it on and turning it off.

Be sure your software properly manages the fact that Port K is attached to both the LEDs and
the Buzzer and only turns on what you want on at any given time.

The configuration registers relevant to Port K are:
 $0032 Port K data register
 $0033 Port K data direction register

Connection to IRQ’ Pin
The HC12 active-low maskable interrupt pin, IRQ’, is wired to pin 32 on the BUS_PORT of the
CML12S-DP256 development board. The AXM-0295 project board includes a push button switch
that generates a logic low when pushed and is well suited to create an interrupt signal. The output
of this switch is available on pin 15 of the AUX1-PORT of the AXM-0295 project board. To use this
switch as the IRQ interrupt, you must wire these two pins together.
 BUS_PORT 32 IRQ’
 AUX1_PORT 15 push button switch

Pre-lab Assignment:

• Read this entire lab assignment so you know what to expect in the lab.
• Complete the steps described in the Pre-lab sheet near the end of this document. Each

student must complete his/her own pre-lab before coming to the lab and hand it in to the lab
TA at the beginning of the lab.

ECE 331 Rev. S12

 p. 3

Laboratory Assignment:
This lab consists of two parts. A check-off sheet is included at the end of this lab document.

• Print the check off sheet. Where indicated, you must record your results on the check-off
sheet. After you successfully finish each part of the lab, show the TA your results and ask
him to sign the check-off sheet.

• Ask the TA to explain how the MON12 program expects you to initialize the stack pointer.
Do you need to initialize it or does MON12 take care of it? Where should you set it (or where
does MON12 set it)?

Part 1: On-board time generation.
This part of the lab is similar to the counter program you developed in lab 7. The program must
sequentially count from $0 to $F and then restarts from $0 again. The binary count value (0000 to
1111) must be displayed on the four LEDs of the project board. The program must provide a time
delay of approximately 1 second between each count so that you can visually observe the LEDs at
each count value. Unlike Lab 7, here your delay subroutine must use the 68HC12 free running
counter timer system, which can be polled within your subroutine. The program should begin at
$4000. The Background section contains information you will need to complete this task.

Preparation:
It is assumed that after the previous labs you can complete the process of developing, uploading,
and testing an ASM program on the development board without step-by-step instructions. If you
require more detailed instruction, please look back at labs 6-8.

1. Write an ASM program to complete the task described above. Be sure to include a delay
subroutine that utilizes the timer system. Assemble and check the program. Save the
program once it is complete and operational. Remember to print the .lst file once you have
tested it and proven it works correctly.

Testing:

2. Upload your program to the CML12S-DP256 development board and run it to test operation.

3. If your program is correct and your delay is sufficiently long, you should now see the count
being displayed on the LEDs. If not, debug your program and repeat. Once your program is
correctly counting, record

4. When you are satisfied that the program is operating correctly, ask the TA to check a
demonstration of your program. Be sure to demonstrate that you have used the timer
system for your delay subroutine. Ask the TA to check off Part 1 on your lab check-off sheet.

 the count sequence in the check off sheet.

Part 2: Interrupts
Starting with the code of part 1, add the ability to handle an externally triggered interrupt coming
from the push button switch on the AXM-0295 project board. Your code should implement an IRQ’
interrupt service routine (ISR) that sounds the buzzer three times with (approximately) 1 second
delay between each buzzer transition, i.e., three buzzer cycles of 1 second ‘on’ and 1 second ‘off’.
End your ISR with the RTI instruction. Be sure to set the IRQ interrupt service vector in the location
remapped by the MON12 program ($3FF2, $3FF3).

Hints: Start your main code at $4000 and put your ISR at $3000.

Because you will be programming the controller through the MON12 program, it will initialize the
stack pointer for you.

ECE 331 Rev. S12

 p. 4

Normally, during software development you need to carefully plan use of the stack to insure the
stack will never collide with the program code. This is especially true when you are nesting
subroutine calls/returns as well as interrupt service routines, as you will do here. In debugging this
program, monitoring the stack contents may be necessary but is complicated because of the
MON12 program. The SP of MON 12 automatically decreases by one for every instruction. Thus,
when pushing something, it thus will subtract one more value from the SP, which is SP=SP-2.
When pulling something, the SP will remain the same (-1 for instruction and +1 for pull).

Preparation:

1. Wire pin 15 of AUX1-PORT on the project board to pin 32 of BUS_PORT on the MCU
development board so your program can control the buzzer.

2. Write an ASM program to complete the task described above. Be sure to include a delay
subroutine that utilizes the timer system. Assemble and check the program. Save the
program once it is complete and operational. Remember to print the .lst file once you have
tested it and proven it works correctly.

Testing:

3. Press the reset button and then press ENTER when you see the monitor startup message.
Upload your program to the CML12S-DP256 development board and run it to test operation.

4. Verify the program generates the proper counting sequence as in Part 1 and record

5. While the program is running, press the push button switch on the project board to initiate an
interrupt. Does the program generate the buzzer sound as expected? If not, debug your
program and repeat until it is working correctly. Record a comment of your observations.

 a
comment. If the program is not operating as expected, debug and repeat before proceeding.

6. Either during debugging or afterward, use the MON12 breakpoint BR command to stop your
program at various locations and observe the contents of your stack. See if you can identify
the values that are on the stack and confirm subroutine/ISR return addresses are stored
correctly. You may be asked to demonstrate this ability during your TA check off.

7. Ask the TA to check a demonstration of your program and check off Part 2 on your lab
check-off sheet.

Final Tasks and Notes

• Turn off the power supply and anything else that you might have turned on.
• Disconnect and return the microcontroller interface board to the lab closet.

Discussion Points
As explained in the Lab Report Guide, you should address these discussion points in a designated
section of your report.

1. After performing Part 1 of this lab, you learned how to use the HC12’s free running counter.
List some advantages of using the free running counter for delay loops compared to
software delay loops that execute a series of instructions.

2. What modifications to your program from Part 2 would be necessary in order to utilize the
XIRQ interrupt instead of the IRQ interrupt? Refer to MON12 Manual.

3. What modifications would you need to make if you wanted to use the timer overflow as your
delay interrupt?

ECE 331 Rev. S12

 p. 5

PRE-LAB 9
Due: At the beginning of lab.

Student Name: ___________________________ Lab. Section (time): __________

Make sure you read the lab document before you start the pre-lab, especially the
Background section.

1. Write the code for a delay subroutine using the free running counter system of the
68HCS12. Include all timer configuration settings. Use a counter clock prescale (PR)
value of %101. Have the subroutine end after the timer overflows a second time
(from reset).

2. Assuming the timer counter starts at ‘0’, calculate the number of timer overflows that

will be closest to a 1 second delay if the prescale factor (PR) is set to %101 (scale of
32) and the master clock is 8MHz. Remember the timer counter is 16 bits.

3. Plan both programs needed for this lab by creating either a flowchart or pseudocode

for the assigned tasks. Show these to the TA before beginning your lab and then
attach them to your lab report.

ECE 331 Rev. S12

 p. 6

LAB 9 CHECK-OFF SHEET

Student Name: ___________________________ Lab. Section (time): __________

Complete this sheet as you complete the lab. Remember to have the TA check off each
section of the assignment. This sheet must be included in your lab report.

Part 1: On-board time generation.

Step 3. What is the observed binary sequence on the LEDs?

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Is the observed delay sufficient to display the count sequence? ________

Part 1: TA sign off

Part 1: On-board time generation . Initial________

Part 2 Interrupts

Step 4. Is the count sequence the same as in part 1? ________

Step 5. Comment on generation of the buzzer sound ___________________

__

Part 2: TA sign off

Part 2: Interrupts Initial________

