
ECE 331  Rev. S11 

  p. 1 

Lab 7: Change Calculation Engine 
 

Summary: 
Practice assembly language programming by creating and testing a useful cash register change 
calculation program that will display results on an LCD display.  
 
Learning Objectives: 

• Review of subroutines and I/O ports 
• Experience using an LCD display output device 

 
Resources and Supplies: 

• LCD.asm subroutine to drive the LCD display  
• Text editor & 68HC12 assembler  
• MON12 monitor program  
• CML12S-DP256 development board  
• CML12S-DP256 MON12 manual 

All documents, including LCD.asm code, are available on the class website 
 
Important Reminders: 

• It is your responsibility to save the programs you create.  
• Pre-lab assignments must be completed before coming to the lab.  

 
Background: 
INCLUDE Directive 
It is often desirable to have blocks of code with specific, reusable, functions stored in individual files 
rather than pasting them as subroutines into the main program file. The include directive links an 
external .ASM program file into the main program, allowing it to be used as if it were a subroutine 
within the main program. To include a .ASM program file in your main program, use the following 
directive format: 

#include “name.asm” 

within the main loop (after ORG statement and before END) of your program using exactly this 
format (file name in quotes). The file you want to include (name.asm) must be stored in the same 
directory as your main program. The include statement should be placed in your program where you 
would have put the code contained within the included file. To call a subroutine from an include file, 
simple refer to the label at the top of the include file code. 
 
LCD Display ASM Subroutine  
The AXM-0295 project development board contains a liquid crystal display (LCD) that can be used 
to display output values. Control of the LCD is complex, so a subroutine has been written for you. 
The LCD subroutine is a file named LCD.asm and should be downloaded from the class website 
and stored in your ASM program directory.  
 
You can access this subroutine using the include directive. For example, you can put the following 
line at the bottom of your main program, after the typical SWI instruction used to terminate a 
program under development:  

 #include “LCD.asm”  ; include lcd display routine, label = Display 

You should put subroutines at the bottom of your main program, after the typical SWI instruction 



ECE 331  Rev. S11 

  p. 2 

used to terminate a program under development, but before the END directive.  
 
Including the LCD.asm code within your program will permit you to call the DISPLAY subroutine as 
you would any other subroutine, i.e. JSR  DISPLAY. The DISPLAY subroutine will setup the LCD 
device and send the value stored in $2000 for display on the LCD in binary format (8 characters on 
the LCD, each representing a binary bit of the value in $2000). Thus, whatever data you have 
stored in $2000 will show up on the LCD after calling the DISPLAY subroutine. 
 
Programming Assignment 
A company that designs microcontroller-based cash registers for retail markets has just hired you!  
A 68HC12 is to be used as the processing element of their new cash register that automatically 
distributes correct change.  Your job is to develop a part of the cash register software that 
calculates the correct coins to be returned to a customer after a purchase. The fractional dollar 
amount (between $.00 and $.99) of the purchase, represented in hexadecimal, will be stored at a 
specified memory location ($1000). Your program must read this value from memory.  Subtracting 
this value from $1.00 will determine the customer’s change that is due, some amount between 0 
and 99 cents.  Your program must calculate the number of each type of coin (quarters, dimes, 
nickels, and pennies) to be returned to the customer.  The output of your program will be used to 
control a coin release device for an automated change delivery system. 
 
The maximum amount of change is $0.99.  If we always use the largest value coins possible, the 
maximum number of coins is: 
 quarters, 3 (11 binary) 
 dimes, 2 (10 binary) 
 nickels, 1 (1 binary) 
 pennies, 4 (100 binary) 
Adding up the binary bits indicates that a single 8-bit value, let’s call it COIN, can indicate the 
desired number of each type of coin. As shown below, the 8-bit COIN vector consists of 2 bits for 
quarters (Q1-Q0), 2 for dimes (D1-D0), 1 for nickels (N0) and 3 for pennies (P2-P0). 
 

bit 7 6 5 4 3 2 1 0 
 Q1 Q0 D1 D0 N0 P2 P1 P0 
Bit assignments for the COIN data vector. 

 
Valid decimal and binary values for the COIN bits are: 
 Bits Decimal Binary 
 Q(1:0) 0 – 3 00, 01, 10, 11 
 D(1:0) 0 – 2 00, 01, 10 
 N(0) 0 – 1 0, 1 
 P(2:0) 0 – 4 000, 001, 010, 011, 100 
 
The COIN vector should be calculated based on the fractional dollar amount of the customer’s 
purchase price, which will be stored in $1000. After calculating the COIN vector, it should be saved 
to $2000 and then displayed on the LCD using the DISPLAY subroutine. 
 
Example: If the fractional dollar purchase amount is $0.13, then the value stored in $1000 should be 
0D16 (1310). The program should calculate that 87 cents is to be returned to the customer. The 
program should determine that the 87 cents should be in the form of 3 quarters, 1 dime, 0 nickels 
and 2 pennies. Thus, the COIN vector should be set to 11010010, which would finally be displayed 
on the LCD. 
 



ECE 331  Rev. S11 

  p. 3 

The challenging parts of this program are: 
1) Properly counting the number of each coin needed 
2) Pasting together all of the count values into a single COIN vector byte. For this task, logic 

shift or bit set instructions should be considered. 
 
Begin the main program at memory location $4000.  The memory location for storing the fractional 
dollar purchase value is $1000.  The value in memory location $2000 will be sent to the LCD by the 
DISPLAY subroutine. End the program with a software interrupt (SWI) instruction before including 
the subroutine. 
 
 
Pre-lab Assignment: 

• Read this entire lab assignment so you know what to expect in the lab.  
• Complete the steps described in the Pre-lab sheet near the end of this document. Each 

student must complete his/her own pre-lab before coming to the lab and hand it in to the lab 
TA at the beginning of the lab.  

 
 
Laboratory Assignment: 

• Print the check off sheet. Where indicated, you must record your results on the check-off 
sheet. After you successfully finish the lab, show the TA your results and ask him to sign the 
check-off sheet.  

 
Change Calculation Engine 
Software Preparation: 

1. Using WinIDE or any text editor, write the code for the change calculator program described 
in the Background section. Save it as a .ASM file in the program directory created previously 
to store the programs you develop for this lab. You will need to have the LCD.asm file (from 
class website) stored in this directory also.  

2. Assemble your program file and fix any syntax errors. 

3. If you wish, simulate your program and correct any bugs. You can do this with a simulator 
first or do all your debugging on the hardware. 

4. Launch the AsmIDE utility from the 68HC12 program folder under the ‘Start’ menu.  

Within AsmIDE, select File  Open to open your .asm file.  

5. From the Build menu, select Assemble. If the input code contains any errors, the .lst file will 
give the line number of the error and a brief description of the nature of the error.  

Hardware Preparation: 

6. From the PC on your lab bench, launch the AxIDE utility from the 68HC12 program folder 
under the ‘Start’ menu. 

7. Connect the CML12S-DP256 board to your computer using the wiring bundle attached to 
your computer. 

8. Connect power to the CML12S-DP256 board. Then press the reset button 

9. In the AxIDE terminal window on the PC, press ENTER to start the Monitor program. 



ECE 331  Rev. S11 

  p. 4 

10. At the Monitor prompt (> ), type ‘load’ and press ENTER. Then upload the .s19 record for 
your change calculation program. 

 

Note: Refer to page 10 of the CML12S-DP256 MON12 manual for information on any MON12 
command or type 'help' at the prompt for a list of commands. The most useful command are:  

MD <address> Memory display RD CPU Register display 
MM <address> Memory modify RM CPU Register modify 
G Go = run program T Trace = step 
BR <address> Set Breakpoint  

Testing: 
Your program requires data at memory location $1000. To test the program you will need to store it 
manually. 

11. Use the RM to set the Program Counter to point at address $4000.  

12. Use the MM command to enter the appropriate hexadecimal input value for $0.13 in 
memory location $1000. Record this value on the check-off sheet. 

13. Calculate the expected number of coins as change for a fractional dollar value of $0.13. 
Record these values and the resulting encoded COIN vector value. 

14. Use the G command to start program execution.  

15. Check your program results and debug your code until it is working correctly. Remember the 
T and BR commands if you need to track down bugs within your code. Remember to reset 
the PC to $4000 each time you re-run the program. 

16. When the program is running correctly, record the result of the program (LCD display value) 
in the check-off sheet. 

17. Record a comment of your observations and print your .lst file to include in your lab report. 

18. Repeat Steps 11 - 16 for the fractional monetary input values below. Record the expected 
and observed program results (COIN value) on the check off sheet. 

a. $0.17 
b. $0.50 
c. $0.99 

19. When you are satisfied that the program is operating correctly, ask the TA to check a 
demonstration of your program. Ask the TA to sign your lab check-off sheet.  

 
Final Tasks and Notes 

• Turn off the power supply and anything else that you might have turned on. 
• Disconnect and return the microcontroller interface board to the lab closet. 

 



ECE 331  Rev. S11 

  p. 5 

Discussion Points 
As explained in the Lab Report Guide, you should address these discussion points in a designated 
section of your report. 
 

1. In the lab you used an include directive for a subroutine that is in another file. After looking at 
the .lst file, explain the purpose of the include directive in your own words. 

.  
2. Answer the questions below to develop a second program that calculates the number of 

dimes and pennies, only, to be returned to the customer; no quarters or nickels.  The 
maximum amount of change is again $0.99.   

a. If we always use the largest value of coins possible, what is the maximum number of 
dimes returned?  What is the maximum number of pennies returned? 

b. Write the new 8-bit COIN vector including the bit assignments. 
c. What are the valid decimal and binary values for the new COIN bits? 

 
3. Assuming that $1 coins someday became popular in America and that pennies were 

dropped from our monetary system (rounding to the nearest $0.05 value), could a single 8-
bit value still be used to represent the number of coins? Assume first that $1 coins would be 
used for all values less than $10. Would the answer change if $1 coins were only given as 
change for values less than $5? 



ECE 331  Rev. S11 

  p. 6 

PRE-LAB 7 
Due:  At the beginning of lab. 

 
Student Name:  ___________________________ Lab. Section (time):   __________ 
 
Make sure you read the lab document before you start the pre-lab, especially the Background 
section. For questions 1 and 2, attach the ASM code segments to this sheet. 
 
1. Write an ASM code segment to calculate the number of quarters contained in a fractional dollar 

amount (between $0.01 and $0.99) that is represented by a hexadecimal value stored in 
memory location $1000. Store the output at memory location $2000. Start your code at memory 
location $4000. Try to use a simulator to test that your code works. 

 
 
2. The maximum number of quarters in a fractional dollar amount is 3. Two bits are needed for the 

number of quarters. Write an ASM program segment that would store the number of quarters in 
memory location $2000 in such a way that bits 6-7 reflect the number of quarters and all other 
bits are zeros.  

 
 
3. Assuming I have data in bits 4:3 of accA and data in bits 2:0 of accB, with all other bits 

irrelevant, how could I store the combined data into bits 4:0 of a single register? Describe the 
ASM instructions (or instruction sequence) that could be used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. What is the expected output (displayed on LCD) of the change calculation program (which only 

operates on the fractional dollar amount) for the following monetary input values? 
 

a. $3.17   Displayed COIN value _____________ 
 

b. $5.50   Displayed COIN value _____________ 
 

c. $1.99   Displayed COIN value _____________ 



ECE 331  Rev. S11 

  p. 7 

LAB 7 CHECK-OFF SHEET 
 
 
Student Name:  ___________________________ Lab. Section (time):   __________ 
 
Complete this sheet as you complete the lab. Remember to have the TA check off each section of 
the assignment. This sheet must be included in your lab report. 
 
For fractional dollar value = $0.13 

Step 12 
Input hexadecimal value ________ 

Step 13 
Number of Quarters: ______, Dimes: _______, Nickels: _______, Pennies: _______ 

Step 13 
Encoded COIN vector value: Expected: _____________ 

Step 16 
Encoded COIN vector value: Observed: _____________ 

Step 17: Comment on observations 
 

___________________________________________________________________________________ 
 

___________________________________________________________________________________ 
 

For fractional dollar value = $0.17 
Step 12 

Input hexadecimal value ________ 
Step 13 

Number of Quarters: ______, Dimes: _______, Nickels: _______, Pennies: _______ 
Step 13 

Encoded COIN vector value: Expected: _____________ 
Step 16 

Encoded COIN vector value: Observed: _____________ 
 

For fractional dollar value = $0.50 
Step 12 

Input hexadecimal value ________ 
Step 13 

Encoded COIN vector value: Expected: _____________ 
Step 16 

Encoded COIN vector value: Observed: _____________ 
 

For fractional dollar value = $0.99 
Step 12 

Input hexadecimal value ________ 
Step 13 

Encoded COIN vector value: Expected: _____________ 
Step 16 

Encoded COIN vector value: Observed: _____________ 
 

TA sign off 
Change Calculation Engine      Initial________ 


