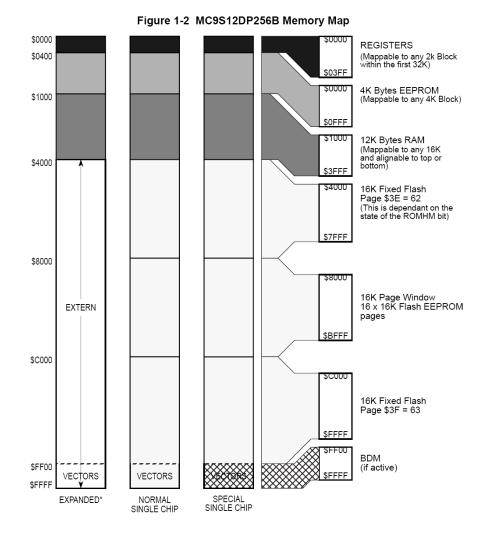

ECE331 Handout 7: Microcontroller Peripheral Hardware

Expanded Microcontroller Architecture: CPU and Peripheral Hardware Details

- CPU
 - components and control signals from Control Unit
 - connections between Control Unit and Data Path
 - components and signal flow within data path
- Peripheral Hardware Memory Map
 - Memory and I/O Devices connected through Bus
 - all peripheral blocks mapped to addresses so CPU can read/write them
 - physical memory type varies (register, PROM, RAM)


Memory Map: 68HCS12 CPU and MC9S12DP256B Evaluation Board

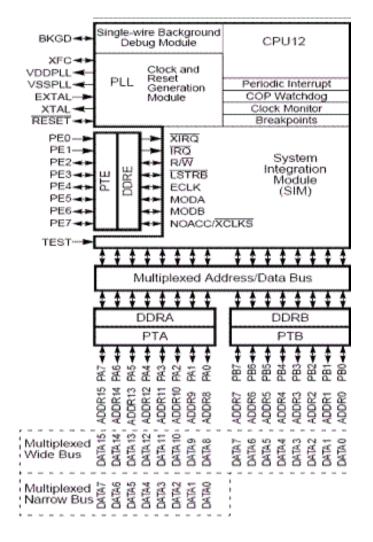
Configuration Register Set

Address	Address Module			
\$0000 - \$0017	0 - \$0017 CORE (Ports A, B, E, Modes, Inits, Test)			
\$0018 - \$0019	Reserved	2		
\$001A - \$001B	Device ID register (PARTID)			
\$001C - \$001F	\$001C - \$001F CORE (MEMSIZ, IRQ, HPRIO)			
\$0020 - \$0027	\$0020 - \$0027 Reserved			
\$0028 - \$002F	\$0028 - \$002F CORE (Background Debug Mode)			
\$0030 - \$0033	CORE (PPAGE, Port K)	4		
\$0034 - \$003F	Clock and Reset Generator (PLL, RTI, COP)	12		
\$0040 - \$007F	Enhanced Capture Timer 16-bit 8 channels	64		
\$0080 - \$009F	Analog to Digital Converter 10-bit 8 channels (ATD0)	32		
\$00A0 - \$00C7	Pulse Width Modulator 8-bit 8 channels (PWM)	40		
\$00C8 - \$00CF	Serial Communications Interface 0 (SCI0)	8		
\$00D0 - \$00D7	Serial Communications Interface 0 (SCI1)	8		
\$00D8 - \$00DF	\$00D8 - \$00DF Serial Peripheral Interface (SPI0)			
\$00E0 - \$00E7	\$00E0 - \$00E7 Inter IC Bus			
\$00E8 - \$00EF	Byte Data Link Controller (BDLC)	8		
\$00F0 - \$00F7	\$00F0 - \$00F7 Serial Peripheral Interface (SPI1)			
\$00F8 - \$00FF	\$00F8 - \$00FF Serial Peripheral Interface (SPI2)			
\$0100- \$010F	\$0100- \$010F Flash Control Register			
\$0110 - \$011B	\$0110 - \$011B EEPROM Control Register			
\$011C - \$011F	Reserved	4		
\$0120 - \$013F	Analog to Digital Converter 10-bit 8 channels (ATD1)	32		
\$0140 - \$017F	Motorola Scalable Can (CAN0)	64		
\$0180 - \$01BF	Motorola Scalable Can (CAN1)	64		
\$01C0 - \$01FF	Motorola Scalable Can (CAN2)	64		
\$0200 - \$023F	Motorola Scalable Can (CAN3)	64		
\$0240 - \$027F	\$0240 - \$027F Port Integration Module (PIM)			
\$0280 - \$02BF	Motorola Scalable Can (CAN4)	64		
\$02C0 - \$03FF	Reserved	320		

Physical Memory

	\$0000 - \$0FFF	4096		
	\$1000 - \$3FFF	RAM array	12288	
	\$4000 - \$7FFF	Fixed Flash EEPROM array incl. 0.5K, 1K, 2K or 4K Protected Sector at start		
	\$8000 - \$BFFF	Flash EEPROM Page Window	16384	
	\$C000 - \$FFFF	Fixed Flash EEPROM array incl. 0.5K, 1K, 2K or 4K Protected Sector at end and 256 bytes of Vector Space at \$FF80 - \$FFFF	16384	

MON12 and NOICE Memory Map


ADDRESS	TYPE MEMORY	MEMORY APPLICATION	
\$C000 - \$FFFF	FLASH	MON12, NOICE, and Utility firmware located in internal flash, Page \$3F.	
\$8000 - \$BFFF	External Ram	User Paged Program Memory space, pages \$20 - \$2E. Note: Pages \$30 - \$3F reside in the internal flash.	
\$4000 - \$7FFF	External Ram	User Program Memory, emulate fixed page \$3E.	
\$3F8C - \$3FFD	Internal Ram	Ram Interrupt Vector Table	
\$3E00 - \$3F8B	Internal Ram	Monitor reserved ram memory. Stacks and variables.	
\$1000 - \$3DFF	Internal Ram	User Internal Ram memory	
\$0400 - \$0FEB	Internal EEprom	User EEprom memory, Monitor reserves \$FEC - \$FEF for Autostart, user should avoid \$FF0 - \$FFF memory use.	
\$0000 - \$03FF	HCS12 Registers	Monitor or user access to control registers.	

MODB	MODA	Mode	Port A	Port B
0	0	special single chip	G.P. I/O	G.P. I/O
		special expanded		
0	1	narrow	Addr/Data	Addr
1	0	special peripheral	Addr/Data	Addr/Data
1	1	special expanded wide	Addr/Data	Addr/Data
0	0	normal single chip	G.P. I/O	G.P. I/O
		normal expanded		
0	1	narrow	Addr/Data	Addr
1	0	reserved		
1	1	normal expanded wide	Addr/Data	Addr/Data
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 0 0 1	00special single chip01special expanded01narrow10special peripheral11special expanded wide00normal single chip00normal expanded01narrow10reserved	00special single chipG.P. I/O01special expandedAddr/Data10special peripheralAddr/Data11special expanded wideAddr/Data11special expanded wideAddr/Data00normal single chipG.P. I/O01normal expandedAddr/Data01narrowAddr/Data10reserved

HCS12 Modes of Operation

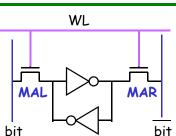
G.P. = general purpose

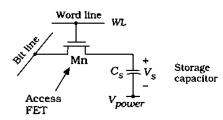
HCS12 Ports for Expanded Modes

Memory Basics

- RAM: Random Access Memory
 - historically defined as memory array with individual bit access
 - refers to memory with both Read and Write capabilities
- ROM: Read Only Memory
 - no capabilities for "online" memory Write operations
 - Write typically requires high voltages or erasing by UV light
- Volatility of Memory
 - volatile memory loses data over time or when power is removed
 - RAM is volatile
 - non-volatile memory stores date even when power is removed
 - ROM is non-volatile
- Static vs. Dynamic Memory
 - Static: holds data as long as power is applied (SRAM)
 - Dynamic: will lose data unless refreshed periodically (DRAM)

ECE 331, Prof. A. Mason

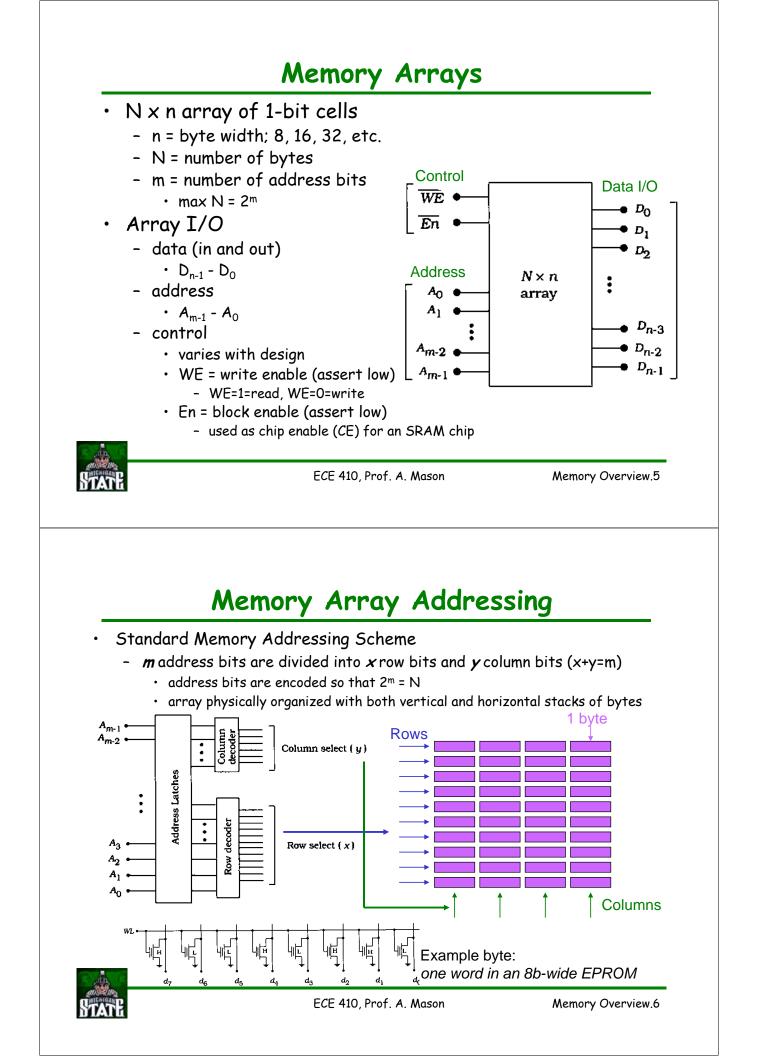

Memory Overview.1


SRAM/DRAM Basics

- SRAM: Static Random Access Memory
 - Static: holds data as long as power is applied
 - Volatile: can not hold data if power is removed
 - 3 Operation States: hold, write, read
 - Basic 6T (6 transistor) SRAM Cell
 - bistable (cross-coupled) INVs for storage
 - access transistors MAL & MAR
 - word line, WL, controls access
 WL = 0 (hold) = 1 (read/write)
- DRAM: Dynamic Random Access Memory
 - Dynamic: must be refreshed periodically
 - Volatile: loses data when power is removed
 - 1T DRAM Cell
 - single access transistor; storage capacitor
 - control input: word line (WL); data I/O: bit line

DRAM to SRAM Comparison

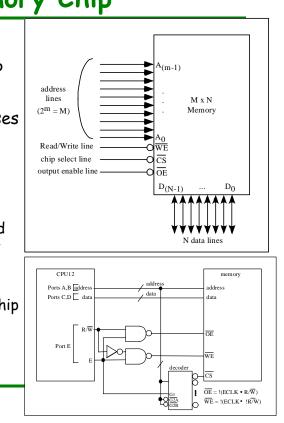
- DRAM is smaller & less expensive per bit
- SRAM is faster
- DRAM requires more peripheral circuitry

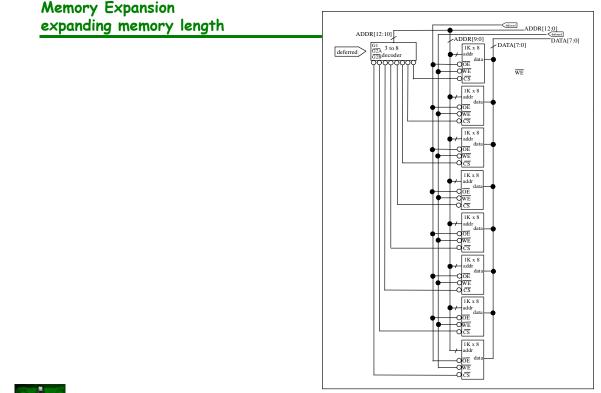

ROM/PROM Basics

ROM: Read Only Memory - no capabilities for "online" memory Write operations data programmed during fabrication: ROM with high voltages: PROM by control logic: PLA Non-volatile: data stored even when power is removed PROM: Programmable Read Only Memory programmable by user -using special program tools/modes read only memory -during normal use non-volatile Read Operation like any ROM: address bits select output bit combinations **EPROM** device - Write Operation structure typically requires high voltage (~15V) control inputs to set data stores charge to floating gate (see figure) to set to Hi or Low - Erase Operation to change data EPROM: erasable PROM: uses UV light to reset all bits EEPROM: electrically-erasable PROM, erase with control voltage ECE 331, Prof. A. Mason Memory Overview.3

Comparison of Memory Types

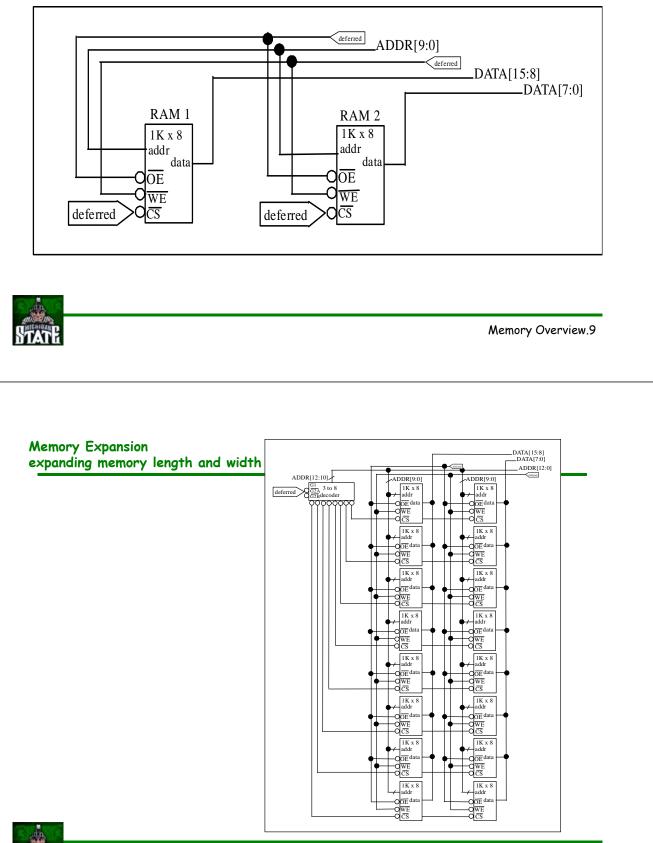
- DRAM
 - very high density \rightarrow cheap data cache in computers
 - must be periodically refreshed \rightarrow slower than SRAM
 - volatile; no good for program (long term) storage
- SRAM (basically a Latch)
 - fastest type of memory
 - low density \rightarrow more expensive
 - generally used in small amounts (L2 cache) or expensive servers
- EEPROM
 - slow/complex to write \rightarrow not good for fast cache
 - non-volatile; best choice for program memory
- · ROM
 - hardware coded data; rarely used except for bootup code
- Register (flip flop)
 - functionally similar to SRAM but less dense (and thus expensive)
 - reserved for data manipulation applications





Typical Memory Chip

- Data
 - x-bits in parallel, typically x = 8, 16
- Address signals
 - m address signals \rightarrow M=2^m addresses
- Control signals
 - /WE: write enable when activated, values on data lines are written to specified address
 - /OE: output enable data at specified location placed on data pins of memory chip, data lines connected to data bus using tristate outputs
 - /CS: chip select selects a specific chip in an array of memory chips
- Connection to HC12 ----- \rightarrow



Memory Expansion expanding memory width

