
ECE 331 Handout 5: ASM Program Examples pg. 1

ECE331 Handout 5: ASM Program Examples

Simple Arithmetic ASM Program Examples (Chapter 2)

Example 1
Write a program to add the numbers stored at memory locations $800, $801, and $802, and store the
sum at memory location $900.

Solution: This problem can be solved by the following steps:
Step 1: Load the contents of the memory location at $800 into accumulator A.
Step 2: Add the contents of the memory location at $801 into accumulator A.
Step 3: Add the contents of the memory location at $802 into accumulator A.
Step 4: Store the contents of accumulator A at memory location $900.
The assembly program is as follows:
 org $4000 ; starting address of the program
 ldaa $800 ; place the contents of the memory location $800 into A
 adda $801 ; add the contents of the memory location $801 into A
 adda $802 ; add the contents of the memory location $802 into A
 staa $900 ; store the sum at the memory location $900
end

Example 2
Write a program to subtract the contents of the memory location at $805 from the sum of the memory
locations at $800 and $802, and store the result at the memory location $900.

Solution: The logic flow of this program is illustrated here. The assembly program is as follows:
 org $4000 ; starting address of the program
 ldaa $800 ; copy the contents of the memory location at $800 to A
 adda $802 ; add the contents of memory location at $802 to A
 suba $805 ; subtract the contents of memory location at $805 from A
 staa $900 ; store the contents of accumulator A to $805
end

Example 3
Write a program to add two 16-bit numbers that are stored at $800~$801 and $802~$803, and store the
sum at $900~$901.

Solution: This program is very straightforward:

org $4000
ldd $800 ; place the 16-bit number at $800~$801 in D
addd $802 ; add the 16-bit number at $802~$803 to D
std $900 ; save the sum at $900~$901

end

Example 4
Write a program to subtract five (5) from four memory locations at $800, $801, $802, and $803.

Solution: In the 68HC12, a memory location cannot be the destination of an ADD or SUB
instruction. Therefore, three steps must be followed to add or subtract a number to or from a
memory location:
Step 1: Load the memory contents into an accumulator.
Step 2: Add (or subtract) the number to (from) the accumulator.
Step 3: Store the result at the specified memory location.
The program is as follows:

ECE 331 Handout 5: ASM Program Examples pg. 2

 org $4000
 ldaa $800 ; copy the contents of memory location $800 to A
 suba #5 ; subtract 5 from A
 staa $800 ; store the result back to memory location $800
 ldaa $801
 suba #5
 staa $801
 ldaa $802
 suba #5
 staa $802
 ldaa $803
 suba #5
 staa $803
end

Assembly and Execution Example (Chapter 2)
The following program will add two numbers stored in memory and then store the resulting sum into
memory. The ASM code, assembly output (.lst) and instruction execution are shown.

Assembly Code
; begin program
 org $C200
 ldaa N1
 adda N2
 staa SUM
 swi
; store data to memory and assign address labels
; data automatically placed at end of program
N1 fcb $02 ;first number
N2 fcb $29 ;second number
SUM fcb $00 ;placeholder for sum

Program Function

Mnemonic Operation Action Op-Code
LDAA load accA from memory A M B6 hh ll
ADDA add memory to A A A + M BB hh ll
STAA store accA to memory M A 7A hh ll

Assembled Code (.lst file)
address op-codes ASM
 1 ; begin program
 C200 2 org $C200
 C200 [03] B6C20A 3 ldaa N1
 C203 [03] BBC20B 4 adda N2
 C206 [03] 7AC20C 5 staa SUM
 C209 [09] 3F 6 swi
 7 ; store data to memory and assign address labels
 C20A 02 8 N1 fcb $02
 C20B 29 9 N2 fcb $29
 C20C 00 10 SUM fcb $00 ;placeholder for sum

 Symbol Table
N1 C20A
N2 C20B
SUM C20C

ECE 331 Handout 5: ASM Program Examples pg. 3

Program Memory (after storing program to microcontroller memory)

Address Value Instruction/Function Note
C200 B6

p
r
o
g
r
a
m

LDAA
Origin

C201 C2
C202 0A
C203 BB

ADDA

C204 C2
C205 0B
C206 7A

STAA

C207 C2
C208 0C
C209 3F SWI end program
C20A 02 d

a
t
a

 N1
C20B 29 N2
C20C 00 SUM

Execution of Program
1. Initial Values –CPU Registers and Data Memory

CPU Registers Data Memory

PC addr value label
C2 00 C20A 02 N1

A B C20B 29 N2

- - C20C 00 SUM

2. After LDAA
PC advances to next instruction (PC PC+3); Value at N1 loads into accA (A $02)
CPU Registers Data Memory

PC addr value label
C2 03 C20A 02 N1

A B C20B 29 N2

02 - C20C 00 SUM

3. After ADDA
PC advances to next instruction (PC PC+3); Sum of values at N1 and N2 are in accA (A $2B)
CPU Registers Data Memory

PC addr value label
C2 06 C20A 02 N1

A B C20B 29 N2

2B - C20C 00 SUM

4. After STAA
PC advances to next instruction (PC PC+3); Value in accA stored to memory at SUM (SUM accA)
CPU Registers Data Memory

PC addr value label
C2 09 C20A 02 N1

A B C20B 29 N2

2B - C20C 2B SUM

5. Software interrupt; program stops

ECE 331 Handout 5: ASM Program Examples pg. 4

Branches & Reading Assembled List File Example (Chapter 2)
The following list output (.lst) file shows memory addresses of program bytes, clock cycles for
each instruction, and the ASM code. This code was written and compiled in the WinIDE
Development Environment. Filename: branch.asm

Memory Address
 #Clock Cycles
 Op-Codes
 Line#
 Label
 Instruction
 Operand
 Comment
 1 ; ECE331 Example of Branches
 2 ; program will copy a list of data at HERE to THERE
 3 ; number of bytes to copy set by BYTES
0000 4 HERE EQU $2000
0000 5 THERE EQU $2020
0000 6 BYTES EQU $06
1000 7 ORG $1000
1000 [01] C600 8 LDAB #$00 ;initialize item counter
1002 [02] CE2000 9 LDX #HERE ;initialize index reg as memory pointers
1005 [02] CD2020 10 LDY #THERE
1008 [03] A600 11 LOOP LDAA 0,X ;using indexed addressing
100A [02] 6A40 12 STAA 0,Y
100C [01] 52 13 INCB ;increment counter
100D [01] C106 14 CMPB #BYTES ;check for end of list
100F [03] 2704 15 BEQ DONE ;if we are done
1011 [01] 08 16 INX ;increment index registers
1012 [01] 02 17 INY
1013 [03] 20F3 18 BRA LOOP ;continue at top
1015 19 DONE SWI ;use SWI for any program that stops running
1016 20 END
 21 ; data storage
2000 22 ORG HERE
2000 10111213 23 FCB $10,$11,$12,$13,$14,$15,$16
 141516
2020 24 ORG THERE
2020 25 RMB BYTES ;reserve locations to copy data
Symbol Table
BYTES 0006
DONE 1015
HERE 2000
LOOP 1008
THERE 2020

Can you answer the following questions?
1. Where is the program stored in memory (what addresses)?
2. What is the op-code for the ASM instruction INCB?
3. What value is loaded into index in line 9?
4. What address mode is used to store data to memory in line 12?
5. What is the value of the relative_address_mode offset byte for BEQ in line 15? Forward or backward?
6. What is the value of the relative_address_mode offset byte for BRA in line 18? Forward or backward?
7. What does the program do? Where is the main loop (from what line to what line)?
8. What is the purpose of line 14?
9. How many times does the copy loop execute? Does the value $16 get copied?
10. Could you explain the purpose and operation of each line in this ASM code?

ECE 331 Handout 5: ASM Program Examples pg. 5

Example Loop using FOR Looping Structure

