
ECE 331: Handout 1

Timeline of Computer History Highlights
For more details, see textbook section 1.1

~ 2000 B.C.

~ 500 B.C.

Sumer (Sumerian)

China

Abacus -First calculating machine

~1650 A.D. Wilhelm Schickard (and others
including Blaise Pascal)

First mechanical adder/subtractor
(not programmable)

1837 Charles Babbag First concept and design a fully
programmable mechanical computer

1937 Alan Turing Concept of the algorithm and
computation with the Turing
machine

1940s (WWII) First plans for an electrical computer
(not planned for personal use)

1950 John Mauchly and J. Presper
Eckert (University of
Pennsylvania, U.S. Army)

ENIAC (Electronic Numerical
Integrator and Computer) –First
general-purpose electronic
computer using relay memories and
vacuum tubes

1948 William Shockley et.al. (Bell
Labs)

First semiconductor transistor; the
beginning of the microelectronics age

1958 Jack Kilby (Texas Instruments)
won Nobel Prize in 2000

First integrated circuit (multiple
transistors in one substrate); built in
germanium

1959 Robert Noyce (Fairchild
Semiconductor)

First silicon integrated circuit

1971 Intel Intel 4004 (4-bit CPU) -First
commercial single-chip
microprocessor

http://en.wikipedia.org/wiki/Wilhelm_Schickard�
http://en.wikipedia.org/wiki/Blaise_Pascal�
http://en.wikipedia.org/wiki/Charles_Babbage�
http://en.wikipedia.org/wiki/Alan_Turing�
http://en.wikipedia.org/wiki/John_Mauchly�
http://en.wikipedia.org/wiki/J._Presper_Eckert�
http://en.wikipedia.org/wiki/J._Presper_Eckert�
http://en.wikipedia.org/wiki/William_Shockley�
http://en.wikipedia.org/wiki/Jack_Kilby�
http://en.wikipedia.org/wiki/Robert_Noyce�

ECE 331: Handout 1 p. 2

Computer (Microcontroller) Architecture

Basic Computer Organization (architecture):
Stored-program computer A.K.A. von Neumann architecture

Functional structure of CPU

ECE 331: Handout 1 p. 3

Freescale HC12/S12 Diagrams

MC68HC812A4 Block Diagram

MCS12DP256B Block Diagram

ECE 331: Handout 1 p. 4

Microcontroller architecture with more details

Terminology and History of Stored-Program Computer Organization

Preface and Contents
All the text and figures below have been extracted from Wikipedia and should be credited to those authors.
Please note that Wikipedia articles are user-written and not reviewed by experts; although the information is
generally correct, it should not be trusted 100%.
 Feb. 2010, A. Mason
Contents

1. von Neumann architecture
2. Universal Turing machine
3. Harvard architecture
4. Flynn's taxonomy

von Neumann Architecture
The von Neumann architecture is a design model for a stored-program
digital computer that uses a central processing unit (CPU) and a single
separate storage structure ('memory') to hold both instructions and data.
It is named after the mathematician and early computer scientist John
von Neumann. Such computers implement a universal Turing machine
(see below) and have a sequential architecture.

A stored-program digital computer is one that keeps its programmed instructions, as well as its data, in read-
write, random-access memory (RAM). Stored-program computers were an advancement over the program-
controlled computers of the 1940s, such as the Colossus and the ENIAC, which were programmed by setting
switches and inserting patch leads to route data and to control signals between various functional units. In the
vast majority of modern computers, the same memory is used for both data and program instructions. The
mechanisms for transferring the data and instructions between the CPU and memory are, however,
considerably more complex than the original von Neumann architecture.

http://en.wikipedia.org/wiki/Main_Page�
http://en.wikipedia.org/wiki/Computer�
http://en.wikipedia.org/wiki/Central_processing_unit�
http://en.wikipedia.org/wiki/Computer_data_storage�
http://en.wikipedia.org/wiki/Data_(computing)�
http://en.wikipedia.org/wiki/Mathematician�
http://en.wikipedia.org/wiki/Computer_scientist�
http://en.wikipedia.org/wiki/John_von_Neumann�
http://en.wikipedia.org/wiki/John_von_Neumann�
http://en.wikipedia.org/wiki/Universal_Turing_machine�
http://en.wikipedia.org/wiki/SISD�
http://en.wikipedia.org/wiki/Computer�
http://en.wikipedia.org/wiki/Computer_program�
http://en.wikipedia.org/wiki/Read-write_memory�
http://en.wikipedia.org/wiki/Read-write_memory�
http://en.wikipedia.org/wiki/Random-access_memory�
http://en.wikipedia.org/wiki/Colossus_computer�
http://en.wikipedia.org/wiki/ENIAC�

ECE 331: Handout 1 p. 5

The terms "von Neumann architecture" and "stored-program computer" are generally used interchangeably,
and that usage is followed in this article.

The earliest computing machines had fixed programs. Some very simple computers still use this design, either
for simplicity or training purposes. For example, a desk calculator (in principle) is a fixed program computer. It
can do basic mathematics, but it cannot be used as a word processor or a gaming console. Changing the
program of a fixed-program machine requires re-wiring, re-structuring, or re-designing the machine. The
earliest computers were not so much "programmed" as they were "designed". "Reprogramming", when it was
possible at all, was a laborious process, starting with flowcharts and paper notes, followed by detailed
engineering designs, and then the often-arduous process of physically re-wiring and re-building the machine. It
could take three weeks to set up a program on ENIAC and get it working.[1]
The idea of the stored-program computer changed all that: a computer that by design includes an instruction
set and can store in memory a set of instructions (a program) that details the computation.

In computing, SISD (Single Instruction, Single Data) is a term referring to a computer architecture in which a
single processor executes a single instruction stream, to operate on data stored in a single memory. This
corresponds to the von Neumann architecture. SISD is one of the four main classifications as defined in
Flynn's taxonomy (see below). In this system classifications are based upon the number of concurrent
instructions and data streams present in the computer architecture. According to Michael J. Flynn, SISD can
have concurrent processing characteristics. Instruction fetching and pipelined execution of instructions are
common examples found in most modern SISD computers

von Neumann bottleneck
The separation between the CPU and memory leads to the von Neumann bottleneck, the limited throughput
(data transfer rate) between the CPU and memory compared to the amount of memory. In most modern
computers, throughput is much smaller than the rate at which the CPU can work. This seriously limits the
effective processing speed when the CPU is required to perform minimal processing on large amounts of data.
The CPU is continuously forced to wait for needed data to be transferred to or from memory. Since CPU speed
and memory size have increased much faster than the throughput between them, the bottleneck has become
more of a problem, a problem whose severity increases with every newer generation of CPU.

The performance problem can be alleviated (to some extent) by several mechanisms. Providing a cache
between the CPU and the main memory, providing separate caches with separate access paths for data and
instructions (the so-called Harvard architecture (see below)), and using branch predictor algorithms and logic
are three of the ways performance is increased.

Universal Turing Machine
In computer science, a universal Turing machine is a Turing machine that can simulate an arbitrary Turing
machine on arbitrary input. The universal machine essentially achieves this by reading both the description of
machine to be simulated as well as the input thereof from its own tape. Alan Turing introduced this machine in
1936–1937. This model is considered by some (for example, Martin Davis (2000)) to be the origin of the stored
program computer—used by John von Neumann (1946) for the "Electronic Computing Instrument" that now
bears von Neumann's name: the von Neumann architecture.

Harvard Architecture
The Harvard architecture is a computer architecture with physically separate storage and signal pathways for
instructions and data. The term originated from the Harvard Mark I relay-based computer, which stored
instructions on punched tape (24 bits wide) and data in electro-mechanical counters. These early machines
had limited data storage, entirely contained within the central processing unit, and provided no access to the
instruction storage as data, making loading and modifying programs an entirely offline process.

http://en.wikipedia.org/wiki/Calculator�
http://en.wikipedia.org/wiki/Mathematics�
http://en.wikipedia.org/wiki/Word_processor�
http://en.wikipedia.org/wiki/Flowchart�
http://en.wikipedia.org/wiki/ENIAC�
http://en.wikipedia.org/wiki/Von_Neumann_architecture#cite_note-0�
http://en.wikipedia.org/wiki/Instruction_set�
http://en.wikipedia.org/wiki/Instruction_set�
http://en.wikipedia.org/wiki/Computer_program�
http://en.wikipedia.org/wiki/Computation�
http://en.wikipedia.org/wiki/Computing�
http://en.wikipedia.org/wiki/Von_Neumann_architecture�
http://en.wikipedia.org/wiki/Flynn%27s_taxonomy�
http://en.wikipedia.org/wiki/Michael_J._Flynn�
http://en.wikipedia.org/wiki/Throughput�
http://en.wikipedia.org/wiki/Wait_state�
http://en.wikipedia.org/wiki/Cache�
http://en.wikipedia.org/wiki/Harvard_architecture�
http://en.wikipedia.org/wiki/Branch_predictor�
http://en.wikipedia.org/wiki/Computer_science�
http://en.wikipedia.org/wiki/Turing_machine�
http://en.wikipedia.org/wiki/Alan_Turing�
http://en.wikipedia.org/wiki/Martin_Davis�
http://en.wikipedia.org/wiki/John_von_Neumann�
http://en.wikipedia.org/wiki/Von_Neumann_architecture�
http://en.wikipedia.org/wiki/Computer_architecture�
http://en.wikipedia.org/wiki/Computer_storage�
http://en.wikipedia.org/wiki/Harvard_Mark_I�
http://en.wikipedia.org/wiki/Punched_tape�
http://en.wikipedia.org/wiki/Central_processing_unit�
http://en.wikipedia.org/wiki/Off-line�

ECE 331: Handout 1 p. 6

Today, most processors implement such separate signal pathways for performance reasons but actually
implement a Modified Harvard architecture, so they can support tasks like loading a program from disk storage
as data and then executing it.

Memory details
In a Harvard architecture, there is no need to make the two memories share characteristics. In particular, the
word width, timing, implementation technology, and memory address structure can differ. In some systems,
instructions can be stored in read-only memory while data memory generally requires read-write memory. In
some systems, there is much more instruction memory than data memory so instruction addresses are wider
than data addresses.

Contrast with von Neumann architectures
Main article: Von Neumann architecture
In a computer with the contrasting von Neumann architecture (and no CPU cache), the CPU can be either
reading an instruction or reading/writing data from/to the memory. Both cannot occur at the same time since
the instructions and data use the same bus system. In a computer using the Harvard architecture, the CPU can
both read an instruction and perform a data memory access at the same time, even without a cache. A
Harvard architecture computer can thus be faster for a given circuit complexity because instruction fetches and
data access do not contend for a single memory pathway. Also, a Harvard architecture machine has distinct
code and data address spaces: instruction address zero is not the same as data address zero. Instruction
address zero might identify a twenty-four bit value, while data address zero might indicate an eight bit byte that
isn't part of that twenty-four bit value.

Contrast with Modified Harvard architecture
Main article: Modified Harvard architecture
A Modified Harvard architecture machine is very much like a Harvard architecture machine, but it relaxes the
strict separation between instruction and code while still letting the CPU concurrently access two (or more)
memory busses.
• The most common modification includes separate instruction and data caches backed by a common

address space. While the CPU executes from cache, it acts as a pure Harvard machine. When accessing
backing memory, it acts like a von Neumann machine (where code can be moved around like data, a
powerful technique). This modification is widespread in modern processors such as the ARM architecture
and X86 processors. It is sometimes loosely called a Harvard architecture, overlooking the fact that it is
actually "modified".

• Another modification provides a pathway between the instruction memory (such as ROM or flash) and the
CPU to allow words from the instruction memory to be treated as read-only data. This technique is used in
some microcontrollers, including the Atmel AVR. This allows constant data, such as text strings or function
tables, to be accessed without first having to be copied into data memory, preserving scarce (and power-
hungry) data memory for read/write variables. Special machine language instructions are provided to read
data from the instruction memory. (This is distinct from instructions which themselves embed constant
data, although for individual constants the two mechanisms can substitute for each other.)

Modern uses of the Harvard architecture
The principal advantage of the pure Harvard architecture - simultaneous access to more than one memory
system - has been reduced by modified Harvard processors using modern CPU cache systems. Relatively
pure Harvard architecture machines are used mostly in applications where tradeoffs, such as the cost and
power savings from omitting caches, outweigh the programming penalties from having distinct code and data
address spaces.
• Digital signal processors (DSPs) generally execute small, highly-optimized audio or video processing

algorithms. They avoid caches because their behavior must be extremely reproducible. The difficulties of
coping with multiple address spaces are of secondary concern to speed of execution. As a result, some
DSPs have multiple data memories in distinct address spaces to facilitate SIMD and VLIW processing.
Texas Instruments TMS320 C55x processors, as one example, have multiple parallel data busses (two
write, three read) and one instruction bus.

http://en.wikipedia.org/wiki/Modified_Harvard_architecture�
http://en.wikipedia.org/wiki/Disk_storage�
http://en.wikipedia.org/wiki/Word_(computer_science)�
http://en.wikipedia.org/wiki/Memory_address�
http://en.wikipedia.org/wiki/Read-only_memory�
http://en.wikipedia.org/wiki/Random_access_memory�
http://en.wikipedia.org/wiki/Von_Neumann_architecture�
http://en.wikipedia.org/wiki/Von_Neumann_architecture�
http://en.wikipedia.org/wiki/CPU_cache�
http://en.wikipedia.org/wiki/Central_processing_unit�
http://en.wikipedia.org/wiki/Modified_Harvard_architecture�
http://en.wikipedia.org/wiki/Modified_Harvard_architecture�
http://en.wikipedia.org/wiki/CPU_cache�
http://en.wikipedia.org/wiki/ARM_architecture�
http://en.wikipedia.org/wiki/X86�
http://en.wikipedia.org/wiki/Atmel_AVR�
http://en.wikipedia.org/wiki/CPU_cache�
http://en.wikipedia.org/wiki/Digital_signal_processors�
http://en.wikipedia.org/wiki/SIMD�
http://en.wikipedia.org/wiki/VLIW�
http://en.wikipedia.org/wiki/Texas_Instruments_TMS320�

ECE 331: Handout 1 p. 7

• Microcontrollers are characterized by having small amounts of program (flash memory) and data (SRAM)
memory, with no cache, and take advantage of the Harvard architecture to speed processing by concurrent
instruction and data access. The separate storage means the program and data memories can have
different bit depths, for example using 16-bit wide instructions and 8-bit wide data. They also mean that
instruction prefetch can be performed in parallel with other activities. Examples include the 8051, the AVR
by Atmel Corp, and the PIC by Microchip Technology, Inc..

Even in these cases, it is common to have special instructions to access program memory as data for read-
only tables, or for reprogramming.

Flynn's Taxonomy
Flynn's taxonomy is a classification of computer architectures, proposed by Michael J. Flynn in 1966. The
four classifications defined by Flynn are based upon the number of concurrent instruction (or control) and data
streams available in the architecture:

 Single Instruction Multiple Instruction
Single Data SISD MISD
Multiple Data SIMD MIMD

Single Instruction, Single Data stream (SISD)

A sequential computer which exploits no parallelism in either the instruction or data streams. Examples of
SISD architecture are the traditional uniprocessor machines like a PC (currently manufactured PC's have
multiple processors) or old mainframes.

Single Instruction, Multiple Data streams (SIMD)
A computer which exploits multiple data streams against a single instruction stream to perform operations
which may be naturally parallelized. For example, an array processor or GPU.

Multiple Instruction, Single Data stream (MISD)
Multiple instructions operate on a single data stream. Uncommon architecture which is generally used for
fault tolerance. Heterogeneous systems operate on the same data stream and must agree on the result.
Examples include the Space Shuttle flight control computer.

Multiple Instruction, Multiple Data streams (MIMD)
Multiple autonomous processors simultaneously executing different instructions on different data.
Distributed systems are generally recognized to be MIMD architectures; either exploiting a single shared
memory space or a distributed memory space.

Diagram comparing classifications
Visually, these four architectures are shown below where each "PU" is a processing unit:

SISD MISD SIMD MIMD

http://en.wikipedia.org/wiki/Microcontrollers�
http://en.wikipedia.org/wiki/Flash_memory�
http://en.wikipedia.org/wiki/SRAM�
http://en.wikipedia.org/wiki/Instruction_prefetch�
http://en.wikipedia.org/wiki/Intel_8051�
http://en.wikipedia.org/wiki/Atmel_AVR�
http://en.wikipedia.org/wiki/Atmel�
http://en.wikipedia.org/wiki/PIC_microcontroller�
http://en.wikipedia.org/wiki/Microchip_Technology�
http://en.wikipedia.org/wiki/Computer_architecture�
http://en.wikipedia.org/wiki/Michael_J._Flynn�
http://en.wikipedia.org/wiki/SISD�
http://en.wikipedia.org/wiki/MISD�
http://en.wikipedia.org/wiki/SIMD�
http://en.wikipedia.org/wiki/MIMD�
http://en.wikipedia.org/wiki/SISD�
http://en.wikipedia.org/wiki/Uniprocessor�
http://en.wikipedia.org/wiki/Personal_Computer�
http://en.wikipedia.org/wiki/Mainframe_computer�
http://en.wikipedia.org/wiki/SIMD�
http://en.wikipedia.org/wiki/Array_processor�
http://en.wikipedia.org/wiki/GPU�
http://en.wikipedia.org/wiki/MISD�
http://en.wikipedia.org/wiki/Space_Shuttle�
http://en.wikipedia.org/wiki/MIMD�
http://en.wikipedia.org/wiki/Distributed_system�
http://en.wikipedia.org/wiki/File:SISD.svg�
http://en.wikipedia.org/wiki/File:MISD.svg�
http://en.wikipedia.org/wiki/File:SIMD.svg�
http://en.wikipedia.org/wiki/File:MIMD.svg�

	Terminology and History of Stored-Program Computer Organization
	Preface and Contents
	von Neumann Architecture
	Universal Turing Machine
	Harvard Architecture
	Flynn's Taxonomy

