
ECE 331 Lesson Objectives Spring 2013

Midterm
Objectives: Students should be able to:
• Perform number base conversions for Dec, Hex, Bin
• Identify value range as function of number of bits; identify out of range overflow for signed and

unsigned binary numbers
• Express numbers in signed 2’s complement (S2C) form, perform 2’s complement operation, and

evaluate subtraction using S2C.
• Identify value range in S2C and determine 2C overflow
• Perform minimization of logic expressions using minimax terms, K-maps, and Boolean arithmetic
• Identity gate symbol and truth table for basic logic gates
• Describe operation of tri-state, mux, decoder
• Identity active low vs. active high logic
• Describe operation of flip flops
• Explain operation of sequential logic circuits including shift registers and counters
• Utilize DeMorgan's relations to implement logic circuits using only NAND (or NOR) gates
• Define important events/times in computer history
• Define and differentiate microprocessor, microcontroller, embedded system
• Describe and identify components in general computer architecture
• Draw and label general computer architecture
• Draw and label connections of CPU components
• Evaluate address and data bus size (# bits/signals) for a given memory size
• Identify architectural components of HC12/S12 block diagrams
• Identify components in programmers model
• Identify and describe main flags in the condition code register (CCR)
• Determine which CCR flag results from specific arithmetic operations
• Identify which CCR flags can change for each ASM instruction
• Identify instruction information from HC12 Instruction table
• Describe assembly (ASM) language instruction format
• Describe instruction execution cycle
• Identify the six main groupings of ASM instructions
• Describe operation/function of primary ASM instructions
• Prepare and use mask bytes in instruction like BCLR/BSET
• Identify and list address modes for HC12 instruction set
• Describe and write ASM code using inherent and immediate address modes
• Describe and write ASM code using direct and extended address modes
• Use ASM Instruction Chart to map results of ASM instructions
• List and identify ASM directives
• Use ASM simulator program to test and debug HC12 ASM code
• Write short ASM instruction blocks to achieve specific program tasks
• Explain simple ASM code and .lst output files
• Describe the steps in the programming process
• Prepare psuedocode and flowcharts to describe an algorithm
• Identify and code looping constructs
• Describe techniques of structured programming and their implementations in ASM code.
• Describe and write ASM code using indexed and relative address modes
• Describe the branch concept and branching instructions
• Implement (in ASM code) conditional operations using branch instructions
• Calculate relative offset (# bytes) for branch instructions
• Describe the steps in the assembly process
• Identify address, data, and program information within .LST and .S19 assembly output files
• Differentiate between data and program bytes stored in memory

• Calculate number of clock cycles and instruction time for blocks of ASM code.
• Write ASM loop constructs with specific delay times
• Define ‘peripheral hardware’ and identify key peripheral blocks on the case study microcontroller
• Explain how data memory, program memory, configuration registers and I/O devices are mapped to

addresses in stored-program computer organization
• Describe I/O addressing modes for peripheral hardware (memory mapped vs. isolated)
• Read and write microcontroller bi-directional digital I/O ports using ASM code

Final
Objectives: Students should be able to:
• Identify and describe different types of memory (SRAM, DRAM, ROM, EEPROM)
• Describe memory array structures and interfacing requirements
• Describe microcontroller operating (addressing) modes
• Describe extended memory I/O bus signals and functions
• Design interface to an external memory array
• Explain the structure and operation of the stack (FILO) and stack pointer
• Utilize ASM instructions to control stack operations
• Describe subroutines and explain the difference between a branch loop and a subroutine
• Write ASM code using subroutines and track stack values through subroutine process
• Identify proper subroutine programming practices including parameter passing
• Track values in stack pointer through ASM subroutine calls and PSH/PUL instructions
• Describe exceptions in terms of microcontrollers
• Explain internal and external reset mechanisms in the HC12
• Describe the hardware and software interrupts of the Freescale HC12/S12 controller
• Identify the requirements for interrupt service routines
• Explain interrupt priority and describe priorities for internal/external resets and interrupts
• Calculate count time for timer hardware using prescale factors
• Describe and write functional control code for hardware timer peripheral blocks
• Describe the operation of the free running timer system and the function of timer registers on the

HC12
• Write ASM code to create time delays using the HC12 free running timer
• Describe the input capture, output compare, and pulse accumulator functions of the timer hardware
• Construct hardware/software systems integrating timer, interrupt, and memory systems
• Explain basic sampling concepts including sampling rate, resolution, etc.
• Describe the operation of A/D converters
• Calculate A/D digital results from analog values and vice versa
• Describe and contrast different serial communication interfaces
• Describe operation of UART, SPI, and I2C communication interfaces
• Describe the shared “open collector” (wired-OR) bus concept
• Describe how Cadence Virtuoso and Analog Development Environment are used in digital

circuit/system design
• Describe similarities and differences between the HC12 and ARM microcontrollers

