ENE421: Engineering Hydrology Fall 2016

Instructor: Prof. P. Mantha, Department of Civil & Environmental Engineering, 1449 Engineering Research Court Room A130, Michigan State University, East Lansing, MI 48824. Phone: (517) 432-0851. email: phani@egr.msu.edu

Class Meets: M, W, F 1:50 pm – 2:40 pm, Room: 1260 Anthony Hall.

Regular Office Hours: M, W: 4:00 - 5:00 PM (Room: TBD) or by appointment

Text: Larry W. Mays, *Water Resources Engineering*, Second Edition, John Wiley & Sons Inc. ISBN: 978-0-470-46064-1. To purchase the textbook directly from the publisher for \$83.20 (custom edition for MSU students), please use the following link: <u>http://store.vitalsource.com/show/9781119316930</u>

Course Objectives:

- 1. Compute infiltration in soils (E)
- 2. Apply the principles of sustainability in design (S)
- 3. Apply Darcy's law to analyze simple 1-D groundwater flows (E)
- 4. Apply well dynamics theory to predict drawdown in an aquifer (E)
- 5. Use the unit hydrograph technique to determine a stream flow hydrograph (E)
- 6. Use the rational method to determine peak flow and develop a synthetic hydrograph (C)
- 7. Design a sewer system for a planned development (C)
- 8. Determine the size of detention pond required to control runoff from an urban development. (C)
- 9. Identify the basic elements of your design that are specifically controlled by federal, state and/or local regulations or codes. (P3)
- 10. Explain the basic concepts in project management (P1)
- 11. Explain the basic concepts in leadership (P4)
- 12. Learn to apply the principles of cost-effective design for contaminant plume management (P2)
- 13. Recognize the need for and the ability to engage in life-long learning (I)
- 14. Demonstrate knowledge of contemporary issues (J)
- 15. Identify and assess the impact of engineering solutions in global, economic, environmental, and societal contexts (H)

My Teaching Philosophy: My goal in teaching is to prepare students to become confident and responsible professionals. My approach to teaching involves being a facilitator in the learning process as opposed to being an authoritarian favoring one-way transfer of information. My objectives, therefore, are to understand and respect individual differences in learning and do the best I can to promote learning in the classroom by working with individual differences rather than against them. At the same time, I wish to impart technical skills and a sense of responsibility by encouraging students to play the role of professionals in the classroom. I expect students to put their best effort in this course. This involves participating in the in-class exercises, reading the assigned material before attending class, doing the homework, editing the project reports until they are clear and correct, and preparing for quizzes and exams.

Academic honesty: Copying all, or part, of someone else's work, or project report, or looking at someone else's quiz or exam during a test period are all obvious forms of academic dishonesty.

Anyone found guilty of academic dishonesty will get a 0.0 for the entire course. For additional information visit the web page of the office of the ombudsman: <u>https://www.msu.edu/unit/ombud/</u>

Grading Policy: Your final grade will be based on your performance in the weekly homework assignments, four quizzes, two projects, a final exam and random in-class activities. Details are given below:

- (5%) Random In-class activities based on material being covered in class
- (20%) Homework: Weekly homework, due a week after it is assigned. No late homework is accepted.
- (25%) 2 projects and reports (12% + 13%): Team work (groups of two or three)
- (30%) 4 quizzes (all topics covered after the last quiz; closed book; one cheat sheet allowed).
- (20%) Final exam: comprehensive, closed book; one cheat sheet allowed.

91 and above	4.0
Between 85 and 90	3.5
Between 85 and 80	3.0
Between 80 and 75	2.5
Between 75 and 70	2.0
Between 70 and 65	1.5
Between 65 and 55	1.0
Less than 55	0.0

Grading scale: I will use the following grading scale:

Syllabus / Important Dates: We will try to follow the schedule shown below. If there are errors in the table (or if we decide to cover some topics in more detail during the semester), the dates and topics may change. I will announce these changes in class and/or on the course web page. It is your responsibility to check the course web page regularly for the latest version of this document.

Study groups: Study groups, if used correctly, can aid your learning. Use a study group to discuss methods that can be employed to solve a homework problem and when and/or why these methods are appropriate. It is inappropriate and academically dishonest to divide-up a homework assignment (problems) among the members of a group, each person doing a few problems and then copying the work of others for problems you did not do.

Quizzes: The four quizzes and the final exam will test your understanding of hydrology. There will be an emphasis on the numerical solution of word problems similar to the ones solved in class and assigned for homework. There will also be questions to test the understanding you have developed of basic concepts and principles through your study outside of class. Remember to bring a calculator for all quizzes and the final exam. Closed book. One cheat sheet allowed.

Use of Electronic Devices in the Classroom: The use of laptops, cell phones, tablets and other similar electronic devices is strictly not allowed during the class hours and during exams. Anyone found using these devices will be asked to leave the room for that day.

Homework: Homework will be assigned to give you some practice using the concepts and procedures discussed in class and in the text. I expect you to do your own homework. Instructions for submitting your

homework will be given when problems are assigned. Due dates will be posted on your course web page and/or announced using the university e-mail system. You are responsible for checking your e-mail and the course web page in a timely manner.

Course Web Page: Follow the link: <u>http://www.egr.msu.edu/classes/ce421/mantha/</u>

Topic #	Date	Торіс	
		Introduction	
1	Wed, Aug 31, 2016	Introduction, Course Objectives; The hydrologic cycle (today)	
2	Fri, Sep 2, 2016	Water: Conservation of mass, water balance; Water at rest and in motion	
		Land-Atmosphere Interactions	
	Mon, Sept 5, 2016	University Holiday	
3	Wed, Sept 7, 2016	Precipitation - 1: Formation and Measurement	
4	Fri, Sept 9, 2016	Precipitation - 2: Analysis of Precipitation Data (Spatial & Temporal)	
5	Mon, Sept 12, 2016	Snow, Measurement and Snowmelt	
6	Wed, Sept 14, 2016	Evapotranspiration (ET) -1	
7	Fri, Sept 16, 2016	Evapotranspiration (ET) -2	
8	Mon, Sept 19, 2016	Work Problems to Illustrate Theory	
9	Wed, Sept 21, 2016	Quiz-1 (Closed book; Topics: #1 - #8)	
		Land-Subsurface Interactions & Groundwater Hydrology	
10	Fri, Sept 23, 2016	Project 1 Out: Form Teams	
11	Mon, Sept 26, 2016	Water in Soils and Infiltration	
12	Wed, Sept 28, 2016	Infiltration Models	
13	Fri, Sept 30, 2016	Groundwater hydrology: Aquifers	
14	Mon, Oct 3, 2016	Aquifer Properties and Storage	
15	Wed, Oct 5, 2016	Theory of Groundwater Flow	
16	Fri, Oct 7, 2016	Flow nets; Well hydraulics	
17	Mon, Oct 10, 2016	Unsteady flow: Theis solution; wellfield	
18	Wed, Oct 12, 2016	Aquifer Test Analyses	
19	Fri, Oct 14, 2016	Contaminant Transport Modeling	
20	Mon, Oct 17, 2016	Work Problems to Illustrate Theory	
		Groundwater - Surface Water Interactions & Surface Water Hydrology	
21	Wed, Oct 19, 2016	Quiz-2 (Closed book; Topics: #11 - #20)	
22	Fri, Oct 21, 2016	Streamflow Measurement	
23	Mon, Oct 24, 2016	Hillslope Hydrology; Hydrograph separation	
24	Wed, Oct 26, 2016	Generation of synthetic streamflows	
25	Fri, Oct 28, 2016	Project 1 Due; Project 2 Out	
26	Mon, Oct 31, 2016	Hydrograph Modeling: The SCS Curve Number method	
27	Wed, Nov 2, 2016	Hydrograph Modeling: The Unit Hydrograph Technique	
28	Fri, Nov 4, 2016	Hydrograph Synthesis: Lagging method, S-Curve	
29	Mon, Nov 7, 2016	Work Problems to Illustrate Theory	
30	Wed, Nov 9, 2016	Quiz-3 (Closed book; Topics: #22 - #29)	

ENE421: Fall 2016 Schedule

		Principles of Design, Sustainability, Leadership and Management in Water Resources
31	Fri, Nov 11, 2016	Synthetic Hydrographs; Peak flow estimation; time of concentration
32	Mon, Nov 14, 2016	Stormwater Sewer Design; Intensity-duration frequency curves
33	Wed, Nov 16, 2016	Application of the Rational Method; Design Computations
34	Fri, Nov 18, 2016	Streamflow Routing
35	Mon, Nov 21, 2016	Computation of Extreme Flows
36	Wed, Nov 23, 2016	Storage routing; the PULS method; Reservoir sizing
	Fri, Nov 25, 2016	University Holiday
37	Mon, Nov 28, 2016	Design of stormwater detention ponds
38	Wed, Nov 30, 2016	Work Additional Problems to Illustrate Theory
39	Fri, Dec 2, 2016	Additional Concepts of sustainability and regional water balance
40	Mon, Dec 5, 2016	Quiz-4 (Closed book; Topics: #31 - #39)
41	Wed, Dec 7, 2016	Principles of cost-effective design; Importance of Professional Licensure
42	Fri, Dec 9, 2016	Concepts in Leadership and project management;
		Project 2 Due; Classes End
43	Mon, Dec 12, 2016	Final Exam between 12:45 PM and 2:45 PM in your regular classroom (1260 Anthony Hall). Comprehensive. Closed book. Remember to bring a calculator.

In-Class Activities: The random in-class quizzes will test your understanding of the material being covered in class on any given day. It is not possible to grade all of the in-class quizzes; therefore, a subset of randomly selected quizzes will be graded and the score added to your final grade for the semester. You should, however, assume that all in-class quizzes will be graded.

Projects. Projects are an important part of this course. They are carefully selected to give you experience in hydrologic design. Project reports will be evaluated for correctness and completeness. Evaluations are evidence-based so if you claim to have done some calculations, it is important that you include those calculations in your report either as an Appendix or in the main body of the report. Once project teams are formed, I have no way of evaluating individual contributions; therefore I assume that you put in your best effort. From time to time, I talk to project teams to make sure all members have contributed to the final product (the report). If all members of a team indicate that a certain member did not substantially contribute to the project, that individual will receive a zero for the project. Therefore it is your responsibility to work with your project team members and to bring any issues to my attention early on (Please do not wait until the end of the semester or close to a due date to report issues such as, for example, your inability to work in a certain team for any reason).

Computational Thinking: I encourage computational thinking in this course as a way of solving problems and thinking about hydrology and hydrologic systems and the world around you in general. What exactly is computational thinking? Do a Google search to learn more or lookup Wikipedia. I encourage the use of software tools such as MATLAB, MATHEMATICA or EXCEL to help you with your day to day computational tasks and for visualizing data. You are doing computations if you are trying to fit a line or a distribution to your data, trying to interpolate scattered rainfall data to create a spatial map of precipitation, or trying to solve a differential equation so you can compare its solution to data that you or someone else collected in the field. I often say that to be a good driver you don't need to understand exactly how the fuel injection system works. In a similar way, you can learn to make intelligent use of readily-available tools such as MATLAB even if you don't understand all the details of the algorithms used inside the functions. I will not be able to teach MATLAB or numerical methods in this course but I expect you to make use of the help system available in MATLAB to learn how to use a function. There are a number of freely available resources on the internet. I am happy to help you with specific tasks but you need to ask!