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Numerous mathematical methods have been developed to reconstruct biological 
networks, for example gene (1,2), metabolic (3), and protein-protein (4,5) networks, from 
experimental data. Reconstructing pathways and networks provides a framework for 
predictive modeling and hypotheses testing to gain more insight into living organisms, 
disease mechanisms, and targeted therapeutics. A popular method used to reconstruct 
pathways and networks is Bayesian Network (BN) analysis. We initially evaluated 
this methodology against the known biochemical networks to gain confidence in the 
networks that are uncovered from the experimental data using BN analysis. From the 
metabolic data we inferred the known sub-networks, such as the tricarboxylic acid 
(TCA) and urea cycles. Extending this methodology to gene networks presents unique 
challenges because of the size of the gene networks. One of the main shortcomings with 
BN learning is the computational inefficiency when applied to large number of nodes 
(genes), such as microarray data. Therefore, we developed approaches that identify 
a smaller subset of relevant genes (active pathways) for network reconstruction to 
circumvent the computational inefficiency.

Introduction
Understanding cellular processes is integral to our ability to manipulate cells and 
identify key variables that may lead to proper function of the cellular or tissue system. 
The ability to predict cellular responses as a function of the genetic, metabolic, and 
environmental make-up of the system is important; not only in enabling us to direct 
proliferation and differentiation pathways in vitro, but also in understanding how the 
changes in these variables may influence their response in vivo. An important step 
in predicting cellular responses is to identify the underlying complex genetic and 
metabolic networks. However, the determination of such networks experimentally is 
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a tedious and daunting task, and most of the current experimental analyses have only 
identified a small subset of possible cellular networks. Another important consideration 
is that cellular networks change and evolve with time. For example, the regulatory 
networks of an undifferentiated cell may be different from a differentiated cell, or the 
network may change during stress, such as during diseased condition or change in 
environment. Although the experimental identification of cellular networks in such a 
multitude of conditions, for a variety of cells may be extremely difficult, it is now 
possible to obtain high throughput information on the metabolic and genomic responses 
of the cells. Mathematical analyses can be applied to identify or infer complex networks 
and analyze their systematic properties and behavior (6,7,8). This approach has the 
potential to facilitate a more complete determination of biochemical and gene regulatory 
networks as well as their evolution. Reconstructing networks from high throughput 
data may help in understanding the underlying mechanism(s) behind cellular processes. 
The biomedical applications of network reconstruction are numerous, ranging from 
improving understanding of disease mechanisms to identifying effective drug targets.
 Recently, a number of computational methods (1-5, 9-12) have been developed 
to reconstruct networks from experimental data. Among them, the most popular 
approaches are based on Bayesian Network (BN) analysis (3,5,9,10). The first attempts 
at network reconstruction using BN analysis endeavored to infer gene regulatory 
pathways and networks from microarray and simulated data of prokaryotes and yeasts 
(9,10). More recently, BN analysis has been applied to reconstruct protein signaling 
network(s) of primary human immune cells (5). Our group used a Bayesian based 
framework to reconstruct metabolic sub-network structures, e.g., TCA and urea cycles, 
from hepatocellular metabolic data (3), to confirm the ability of the proposed approach 
to reconstruct known biological networks. This provided some degree of confidence 
in the novel networks that may be inferred from experimental data, such as gene 
regulatory networks from microarray data. The advantage of the Bayesian framework 
over other data-driven methods is the ability of the Bayesian approach to perform cause 
and effect analyses, thus identifying causal relationships. This is accomplished without 
a priori detailed knowledge or assumptions of the biological system and the governing 
equations, but rather is based upon the concept of conditional probability (9). In addition 
to expressing causal relationships, the graphical representation and use of probability 
theory in BN make it amenable to learning incomplete as well as unmeasured data. 
Furthermore, similar to model-driven methods, the BN approach permits the evaluation 
of several hypothetical networks using quantitative measures, such as a Bayesian metric 
score, to access the likelihood of a proposed network structure. 
 Despite substantial advances and progress in our understanding of biological 
processes, there are limitations with the existing approaches for reconstructing networks. 
A major shortcoming of BN learning is the computational inefficiency when applied to 
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large number of nodes, as is the case with microarray data. A number of approaches have 
been proposed to alleviate this problem. They either take advantage of the genome-wide 
interaction data, such as protein-protein and protein-DNA interaction data, or require 
large amounts of perturbation data to reconstruct an overall molecular network (1,4). 
However, the availability of such data is limited for mammalian systems. Therefore, we 
developed approaches to identify a smaller subset of relevant genes (active pathways) 
for network reconstruction, by capitalizing upon the integration of multi-source and 
multi-level data to identify the active pathways (13). In this paper, we demonstrate that 
mathematical analyses can aid in identifying known and potentially novel pathways in 
a cellular system under different experimental conditions. Nonetheless, experimental 
verification of the novel networks would still be required. 

Materials and Methods

Materials, Cell Culture, and Assays
The details of the experimental system and measurements are described in (3,13). The 
modeling approaches discussed in this paper are briefly described below.

Bayesian Networks (BN)
BN are directed acyclic graphs (DAG) whose nodes correspond to variables and whose 
arcs represent the dependencies between variables. The dependencies are determined 
by the conditional probabilities of each node xi, given its parent node pa, Pr(xi | pa(xi)). A 
BN i) assumes conditional independence, such that each node is independent to its non-
descendants, given its parents, in other words, xi and xj are conditionally independent 
to each other given pa, then

Pr(xi | xj, pa (xi)) = Pr(xi | pa (xi))     [1]
 

and ii) consists of the joint distribution defined by a set of variables {xi} as:
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Inferring the BN from information theory
Metabolic flux data is much smaller in scale than microarray data; nevertheless, applying 
BN analysis to flux data is still computationally prohibitive. Many algorithms exist that 
can infer the BN structure; only a few are computationally efficient enough to deal with 
large datasets. Information theory-based learning algorithm is one such method, which 
we have applied to the flux data to infer the underlying metabolic regulatory network. 
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This algorithm has been applied to real-world data with hundreds of variables and 
records (14), and is described in (3).

Fisher’s Discriminant Analysis 
Fisher’s Discriminant Analysis (FDA) was applied to identify the measured metabolic 
fluxes that contributed to the separation of different phenotypes (cytotoxic versus 
nontoxic). FDA identifies the projection axes that maximize the ratio of the between-
group and the within-group variations. Details on the FDA algorithm can be found in 
(15).

Gene Set Enrichment analysis (GSEA) of the gene data
The genomic responses of the cells to the treatments were evaluated with cDNA 
microarray analyses. The expression levels of 19,522 genes were measured, and the 
data was analyzed using GSEA. GSEA aims to identify the gene sets whose coordinated 
change differentiates two phenotypes. The software GSEA-P, from http://www.broad.
harvard.edu/gsea/, was used for the GSEA analysis. The gene sets with a high significance 
of enrichment are considered important in separating the distinct phenotypes.

Integrating the gene expression and metabolic flux profiles
Multi-block partial least squares (MBPLS) is a hierarchical multivariate analysis 
method (16,17), where the variables are divided into different blocks based upon a 
priori knowledge, for example, according to different stages of an industrial process 
(16) or different metabolic pathways in a cell (18). Here, the genes are separated into 
different blocks based upon their functional roles in different pathways. This facilitated 
the identification of an important block (e.g., a gene set) to a desired dependent variable 
(e.g., metabolic flux), and then further identified the important genes within the block. 
Important genes sets were identified by evaluating the weights of each block and the 
importance of individual genes was identified by evaluating the regression coefficients 
of the genes within the block. For more details of the MBPLS algorithm, refer to Hwang 
et al., (2004).

Results and Discussion
Reconstructing sub-networks from metabolic data
Using BN analysis we reconstructed the metabolic sub-networks, namely, the TCA and 
urea cycles, from the metabolic flux data (3), which we reproduce here in brief. The 
analysis was able to infer the relationships shown in Figure 5.1B, which compared well 
with the TCA cycle (Figure 5.1A). The direct connections between the metabolites 
citrate, α-ketoglutarate, succinyl-CoA and malate, in the TCA cycle were not learned 
by BN analysis, but rather were identified as being linked to oxidative phosphorylation 



Figure 5.1. Reverse Engineered TCA and urea cycle learned by mutual information based algorithm. A) Actual 
metabolic network of TCA cycle, each node represents a metabolite and connections (arcs) between nodes 
represent the metabolic fluxes. B) TCA cycle inferred by Bayesian network analysis, each node represents 
a flux in Figure 5.1A, each arc between the nodes represent a causal relation between the fluxes, the solid 
connections were learned and the dashed connections were not learned by Bayesian network analysis. C) 
Actual metabolic network of urea cycle, each node represents a metabolite and connections between 
nodes represent the metabolic fluxes. D) Urea cycle inferred by Bayesian network analysis, each arc 
between the nodes represent a causal relation between the fluxes, the solid connections were learned 
and the dashed connections were not learned by Bayesian network analysis. OAA: oxaloacetate, AST: 
aspartate aminotransferase, AS: arginosuccinate synthetase, CPS: Carbarmoyl-p synthetase, PC: pyruvate 
carboxylase , CS: citrate synthase, ICS: iso-citrate synthase, OGDH: α-ketoglutarate dehydrogenase, 
SDH: succinate dehydrogenase, MDH: malate dehydrogenase.
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and the electron transport chain. This inference is encouraging, since oxidative 
phosphorylation in which ATP is formed by electron transfer from NADH and FADH2 
to O2, is indeed linked to the TCA cycle. Another important hepatic function is the 
urea cycle. BN analysis was able to reconstruct many of the reactions in the urea cycle 
(Figure 5.1D). A comparison of the actual pathways (Figure 5.1C) and the inferred 
network is shown in Figure 5.1. The connection between arginine and citrulline was not 
learned by BN analysis. This could be due to the noise in the data or missing data (3).
 BN analysis offers the advantage of characterizing the underlying causal 
structure within the data, unlike correlation-based approaches which cannot identify 
the causal/ parent variable that is responsible for the observed correlation between 
two variables (3). Modulating the common cause or parent variable as opposed to the 
variable(s) that are simply highly correlated will more likely elicit a response in the target 
variable(s). For example, in our previous paper (15), the aspartate aminotransferase 
pathway was selected as a potential pathway to optimize or restore urea production. 
However, in the sub-network inferred by the BN analysis, shown in Figure 5.1D, the 
argininosuccinate synthetase and argininosuccinase reactions have common causes, the 
carbamoyl-P-synthetase and ornithine transcarbamylase reaction, suggesting that the 
argininosuccinate synthetase pathway is relevant to, but not the cause of, urea synthesis. 
The network reconstructed by the BN analysis suggested that to optimize urea production, 
the variable(s) which should be modified are carbamoyl-P-synthetase and ornithine 
transcarbamylase rather than argininosuccinate synthetase. This suggests that ammonia, 
regardless of its source, combines with HCO3- to form carbamoyl phosphate, which is 
the driving force for urea synthesis and the source of argininosuccinate synthetase and 
aspartate aminotransferase activation. Thus, BN analysis identified novel/parent targets 
to optimize cellular functioning under altered environmental conditions. These novel 
targets need to be validated with further experiments.

Identifying the active pathways from gene expression data
As mentioned above, BN analysis is computationally inefficient when used to infer large 
networks from gene expression data. Therefore, this section describes a hierarchical 
framework we developed to identify a subset of relevant genes (active pathways) for 
network reconstruction (15). In brief, the hierarchical framework consisted of three 
stages. First, discriminant analysis was used to identify the metabolites that were most 
relevant in differentiating the phenotype of interest. Second, GSEA was applied to the 
gene expression data to identify the sets of genes that were transcriptionally altered and 
correlated statistically significantly to the desired phenotype. Third, a multi-block partial 
least squares analysis (MBPLS) regression model was used to integrate the expression 
of the enriched gene sets with the metabolic profiles to identify the genes that regulate 
the metabolic pathways found to be important in separating the phenotype.
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Metabolites involved in differentiating the phenotype
We have found that mono- and poly- unsaturated fatty acids, tumor necrosis factor 
(TNF)-α and their combinations induced a non-toxic phenotype, whereas, the saturated 
fatty acid palmitate induced a toxic phenotype in HepG2 cells (19) and TNF-α increased 
this toxicity. For the various conditions, the rates of uptake/release of 27 metabolites, 
of glucose, fatty acid, and amino acid metabolism were also measured (13). To identify 
the metabolites responsible for separating the phenotypes (cytotoxic versus non-toxic 
as defined by the level of lactate dehydrogenase [LDH] release) and highly correlated 
with the cytotoxic phenotype, FDA and (Pearson’s) correlation analysis were applied. 
FDA found that beta-hydroxybutyrate (BOH), acetoacetate (AcAc), and intracellular 
triglyceride (TG) accumulation were responsible for separating the cytotoxic palmitate 
phenotype from the rest of the non-toxic FFA phenotype (13). Correlation analysis 
identified that BOH and acetoacetate were strongly positively related to the cytotoxicity, 
while TG accumulation had strong negative correlation (Table 5.2). These results are 
in agreement with other studies which have identified that increased beta-oxidation 
is associated with increased reactive oxygen species (ROS) generation (20), while 
channeling of palmitate to TG reduces its toxicity (21). Therefore, the effect of a gene 
on these processes would indicate how that gene would affect the cytotoxicity.

Gene sets found enriched by GSEA
With single-gene analysis, one often encounters either a long list of statistically 
significant genes without any unifying biological theme or the important genes may not 
meet statistical significance and are thus not selected (22). Interpretation of the former 
can be overwhelming and ad hoc, and dependent on one’s area of expertise. With the 
latter, since relevant biological differences may oftentimes be modest relative to the 
noise in the microarray, important genes may be missed by the analysis. To overcome 
these limitations, GSEA, unlike the single-gene analysis, aims to identify the gene sets 
whose coordinated changes differentiate phenotypes (22). The gene sets with a high 
significance of enrichment are considered important in separating the distinct phenotypes. 
GSEA was applied to identify the gene sets/processes most associated with the palmitate-
induced cytotoxicity (13). Of the gene sets evaluated, those related to oxidative stress, 
such as ROS, glutathione, oxidative phosphorylation and electron transport chain (ETC) 
were significantly enriched. We have previously shown the importance of ROS generation 
by palmitate in the toxicity (19). Thus, the GSEA identified a potential mechanism for the 
observed toxicity (13).

Pathways involved in inducing the phenotype
MBPLS analysis was applied to identify the gene sets and the underlying genes that 
were strongly related to the cytotoxicity, by evaluating the regression coefficients 
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Table 5.1 Correlation between the metabolite production/ uptake and lactate dehygrogenase (LDH) 
release.

Metabolite Correlation Coefficent
Triacylglycerol Synthesis -0.52324

Glycerol -0.48656
Glucose -0.47572
Lactate -0.38699

Glutamate Uptake -0.19394
Cysteine Uptake -0.18678
Ornithine Uptake -0.16018

NH3 Uptake -0.13579
Glycine Uptake -0.11056

Aspartate Uptake -0.10666
Arginine Uptake -0.09454

lsoleucine Uptake -0.07904
Histidine Uptake -0.07651
Alanine Uptake -0.07491
Tyrosine Uptake -0.06592
Lyssine Uptake -0.05902
Valine Uptake -0.05244

Glutamine Uptake -0.00651
Phenylalanine Uptake -0.00258

Leucine Uptake 0.017462
Threonine Uptake 0.043442

Proline Uptake 0.130492
Serine Uptake 0.157344

Fatty Acid Uptake 0.173699
O2 In 0.574845

Acetoacetate 0.853407
Betahydroxybutyrate 0.935881
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Table 5.2 Genes Selected by Hierarchical Approach. Access#: Accession Number, RC(BOH): regression 
coefficient for genes to predict beta-hycroxybutyrate (BOH), abs(RC): absolute value of the regression 
coefficients.

Access # RC (BOH) abs (RC) Gene Name
AA425826 -4.24E-02 4.24E-02 mitogen-activated protein kinase kinase 2 (MAP2K2)
N56898 3.89E-02 3.89E-02 glutathione S-transferase M5 (GSTM5)
AA664101 3.64E-02 3.64E-02 aldehyde dehydrogenase 1 family, member A1 

(ALDH1A1)
AA489666 -3.53E-02 3.53E-02 neutrophil cytosolic factor 1 (47kDa, chronic 

granulomatous disease, autosomal 1) (NCF1)
AA406536 3.33E-02 3.33E-02 NADH dehydrogenase (ubiquinone) Fe-S protein 1, 

75kDa (NADH-coenzyme Q reductase) (NDUFS1)
AA680322 3.15E-02 3.15E-02 NADH dehydrogenase (ubiquinone) 1 alpha 

subcomplex, 4, 9kDa (NDUFA4)
AA455235 -2.93E-02 2.93E-02 aldehyde dehydrogenase 1 family, member A3 

(ALDH1A3)
AA43630 2.93E-02 2.93E-02 aldehyde dehydrogenase 3 family, member B2 

(ALDH3B2)
AA136566 -2.77E-02 2.77E-02 forkhead box M1 (FOXM1)
AA664007 -2.75E-02 2.75E-02 serine/threonine kinase 25 (STE20 homolog, yeast) 

(STK25)
T72259 2.72E-02 2.72E-02 cytochrome P450, subfamily IIA (phenobarbital-

inducible), polypeptide 7 (CYP2A7)
W88587 -2.41E-02 2.41E-02 GNAS complex locus
AA256532 -2.41E-02 2.41E-02 insulin-like growth factor 1 receptor
T58873 -2.36E-02 2.36E-02 FOS-like antigen 2
AA486570 -2.32E-02 2.32E-02 glutathione S-transferase M4 (GSTM4), transcript 

variant 3
H59758 2.31E-02 2.31E-02  v-raf murine sarcoma 3611 viral oncogene homolog 1 

(ARAF1)
N30404 -2.26E-02 2.26E-02 copper chaperone for superoxide dismutase (CCS)
AA035384 2.21E-02 2.21E-02 succinate dehydrogenase complex, subunit D, integral 

membrane protein (SDHD)
AA055585 2.20E-02 2.20E-02 core promoter element binding protein (COPEB)
T52484 2.20E-02 2.20E-02 nerve growth factor, beta polypeptide (NGFB)
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of the individual genes and gene sets (13). Glycolysis, oxidative phosphorylation, and 
ETC had very high block weights. The selection of these gene sets indicates that the 
alterations in the energy transduction pathways are strongly related to the toxicity caused 
by free fatty acids (FFA). In addition, extracellular related kinase (ERK), ERK1/2 MAPK, 
ROS, glutathione, and fatty acid metabolism gene sets also had high weights, indicating 
that alterations in fatty acid metabolism, ERK/MAPK signaling and redox state of 
the cells play important role in the FFA toxicity. Among the genes, Mitogen-activated 
protein kinase kinase 2 (MAP2K2) had the highest negative regression coefficient to 
BOH (Table 5.2), suggesting potentially protective role for this kinase. MAP2K2 is an 
upstream MAP kinase which phosphorylates and activates extracellular signaling kinases 
(ERKs) ERK2 and ERK3. ERK2 and 3 regulate diverse cellular processes such as growth 
and differentiation. Because multiple processes could be affected by altering the levels or 
activities of MAPKs, MAP2K2 was not tested further. Specifically, we looked into those 
genes that had very high positive regression coefficients as their roles could be easily 
evaluated using pharmacological inhibitors. Glutathione-S-transferase M5 (GSTM5) had 
the highest positive regression coefficient to BOH (Table 5.2). However, its basal levels 
in hepatocytes is very low (24) and its purported role is in the detoxification of harmful 
aldehydes. This suggested that inhibiting GSTM5 may not be very effective in reducing 
toxicity. Similarly, while the aldehyde dehydrogenase 1 family member A1 (ALDH1A1) 
had the second highest regression coefficient, and another aldehyde dehydrogenase 
(ALDH1A3) had very high negative regression coefficient (Table 5.2). This suggested 
that to test the roles of these genes, alterations in the specific isoforms would be required 
and the application of inhibitors of ALDH, which are not specific to any isoform, would 
lead to confounding results.  On the other hand, two isoforms of NADH dehydrogenases 
had very high positive regression coefficients to cytotoxicity. While their individual 
coefficients were slightly smaller than glutathione S-transferase M5 (GSTM5) as well 
as aldehyde dehydrogenase 1A1 (ALDH1A1), their combined coefficients were greater 
than any other gene(s). Additionally, NADH dehydrogenases have also been suggested 
as a major source of ROS in the cells (23). This indicated that inhibition of NADH 
dehydrogenases could reduce the ROS levels, and possibly, the LDH release. Because 
both isoforms had high positive coefficients, the roles of these NADH dehydrogenases 
could be easily tested using pharmacological inhibitor. As shown in Table 5.3, the ROS 
level and LDH release were significantly reduced in the presence of rotenone, an inhibitor 
of NADH dehydrogenase. Thus the predicted role of NADH dehydrogenase in inducing 
the cytotoxic phenotype of palmitate was experimentally validated. 
 In summary, integrating the metabolic and genetic profiles can identify a smaller 
subset of genes relevant to the phenotype of interest, see Table 5.2. This smaller subset 
of genes can then be subsequently subjected to BN analysis for network reconstruction 
with reduced computational cost as described above for the metabolic network 
reconstruction.
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Table 5.3. Relative reactive oxygen species (ROS) and absolute lactate dehydrogenase (LDH) release 
in the presence of palmitate and palmitate + rotenone

ROS LDH
Control 1  +  0.11 1.07  +  0,4
Palmitate 1.95  +  0.1** 4.67  +  0.79**
Palmitate/Rotenone 1.06  +  0.14 2.81  +  0.12**
** P<0.01 with T-test
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