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Optimal Multiband Transmission Under Hostile
Jamming

Tianlong Song, Wayne E. Stark, Tongtong Li, and Jitendra K. Tugnait

Abstract—This paper considers optimal multiband transmis-
sion under hostile jamming, where both the authorized user and
the jammer are power-limited and operate against each other.
The strategic decision-making of the authorized user and the
jammer is modeled as a two-party zero-sum game, where the
payoff function is the capacity that can be achieved by the
authorized user in presence of the jammer. First, we investigate
the game under AWGN channels. It is found that: either for the
authorized user to maximize its capacity, or for the jammer to
minimize the capacity of the authorized user, the best strategy for
both of them is to distribute the transmission power or jamming
power uniformly over all the available spectrum. The minimax
capacity can be calculated based on the channel bandwidth
and the signal-to-jamming and noise ratio, and it matches with
the Shannon channel capacity formula. Second, we consider
frequency selective fading channels. We characterize the dynamic
relationship between the optimal signal power allocation and the
optimal jamming power allocation in the minimax game, and
then propose an iterative water pouring algorithm to find the
optimal power allocation schemes for both the authorized user
and the jammer.

Index Terms—Multiband transmission, jamming, capacity
analysis, game theory.

I. INTRODUCTION

HOSTILE jamming, in which the authorized user’s signal
is deliberately interfered by the adversary, is one of the

most commonly used techniques for limiting the effectiveness
of an opponent’s communication [1]. In traditional research on
jamming strategy and jamming mitigation, there is generally
an assumption that the jammer or the authorized user can
access at least part of the information about the transmission
pattern of its adversary. As such, the jammer can launch
more effective jamming by exploiting the information it has
about the authorized user, e.g., correlated jamming [2]–[4]
or disguised jamming [5]–[9]. For jamming mitigation, the
authorized user can mitigate the jammer’s effect by applying a
particular anti-jamming scheme that is robust against a specific
jamming pattern [10], [11]. The underlying assumption is that
the jamming varies slowly such that the authorized user has
sufficient time to track and react to the jamming.
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However, if the jammer is intelligent and can switch its
patterns fast enough, then it would be impossible for the au-
thorized user to track and react in real time. In this case, when
choosing the strategy to maximize its capacity, the authorized
user has no knowledge of the jamming strategy. Similarly,
while trying to minimize the capacity of the authorized user,
the jammer has no knowledge of the user strategy, either.
Regarding this scenario, there has been a surge in research
that applies game theory to characterize and analyze strategies
for communication systems under jamming with unpredictable
strategies.

A lot of work on game theory in communications has
been focused on the single user and single band case [12]–
[16]. The optimal jamming strategy under the Gaussian test
channel was investigated in [12], and the worst additive noise
for a communication channel under a covariance constraint
was studied in [13]. The capacity of channels with block
memory was investigated in [14], which showed that both
the optimal coding strategy and the optimal jamming strategy
are independent from symbol to symbol within a block. The
authors in [15] discussed the minimax game between an
authorized user and a jammer for any combinations of “hard”
or “soft” input and output quantization with additive noise and
average power constraints. In [16], a dynamic game between
a communicator and a jammer was considered, where the
participants choose their power levels randomly from a finite
space subject to temporal energy constraints.

Application of game theory to multiuser and multi-
band/multicarrier communications has been brought to at-
tention in recent years [17]–[21]. In [17], the authors pro-
posed a decentralized strategy to find out the optimal pre-
coding/multiplexing matrices for a multipoint-to-multipoint
communication system composed of a set of wideband links
sharing the same physical resources. In [18], a scheme
aiming for fair allocation of subcarriers, rates, and power
for multiuser orthogonal frequency-division multiple-access
(OFDMA) systems was proposed to maximize the overall
system rate, subject to each user’s maximal power and minimal
rate constraints. In [19], jamming mitigation was carried
out by maximizing the sum signal-to-interference and noise
ratio (SINR) for multichannel communications. In [20], the
authors considered a particular scenario where K users and
a jammer share a common spectrum of N orthogonal tones,
and examined how each user could maximize its own total
sum rate selfishly. In [21], the authors investigated the secrecy
capacity of the users under malicious eavesdropping and
friendly jamming.

Game theory has also been applied to cognitive radios and
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ad hoc networks [22]–[26]. New techniques for analyzing
networks of cognitive radios that can alter either their power
levels or their signature waveforms through the use of game
models were introduced in [22]. In [23], a game theoretic
overview of dynamic spectrum sharing was provided regarding
analysis of network users’ behaviors, efficient dynamic dis-
tributed design, and performance optimality. A game theoretic
power control framework for spectrum sensing in cognitive
radio networks was proposed in [24], and the minimax game
for cooperative spectrum sensing in centralized cognitive ra-
dio networks was investigated in [25]. In [26], the authors
developed a game theoretic framework to construct convergent
interference avoidance (IA) algorithms in ad hoc networks
with multiple distributed receivers.

For spectrum and power utilization in multiband commu-
nications, an open while interesting question is: in presence
of a random and intractable opponent, can the authorized user
or the jammer benefit from utilizing part instead of the entire
spectrum and/or applying nonuniform power allocation?

In this paper, we try to address this question from a
game theoretic perspective, taking jamming and jamming
mitigation as a game between a power-limited jammer and
a power-limited authorized user, who operate against each
other over the same spectrum consisting of multiple bands or
subchannels. The authorized user is always trying to maximize
its capacity under jamming by applying an optimal strategy.
Accordingly, the jammer would like to find an optimal strategy
that can minimize the capacity of the authorized user. To apply
a chosen strategy, the authorized user or the jammer selects
a particular number of subchannels and applies a particular
power allocation scheme over the selected subchannels. For
both the authorized user and the jammer, the subchannels may
not be chosen with equal probability. The strategic decision-
making of the authorized user and the jammer can be modeled
as a two-party zero-sum game, where the payoff function is
the capacity that can be achieved by the authorized user in
presence of the jammer.

Solving the zero-sum game above is equivalent to locating
the saddle point, which produces optimal strategies for both
the authorized user and the jammer. That is, the jammer cannot
reduce the capacity of the authorized user by applying a
jamming strategy different from the optimal one; meanwhile,
the authorized user cannot increase its capacity by switching
to another transmission strategy either. We find that: under
AWGN channels, either for the authorized user to maximize
its capacity, or for the jammer to minimize the capacity of
the authorized user, the best strategy for both of them is
to distribute the signal power or jamming power uniformly
over all the available spectrum. The minimax capacity of the
authorized user is given by C = B log2(1+

Ps

PJ+PN
), where B

is the bandwidth of the overall spectrum, PN the noise power,
Ps and PJ the total power of the authorized user and the
jammer, respectively. In other words, the minimax capacity
above is the minimal capacity that can be achieved by the
authorized user if it utilizes all the available spectrum and
applies uniform power allocation, no matter what strategy is
applied by the jammer; meanwhile, it is also the maximal
capacity that can be achieved by the authorized user if the

jammer jams all the available spectrum and applies uniform
power allocation, no matter what strategy is applied by the
authorized user.

As can be expected, the results we obtained under AWGN
channels may no longer be true for frequency selective fading
channels. In the jamming-free case, it is well known that
the classical water pouring algorithm provides the optimal
power allocation scheme that maximizes the capacity of the
authorized user under frequency selective fading channels.
Naturally, the situation becomes complicated when a jammer
is involved in the game.

To identify the saddle point under frequency selective fad-
ing channels, we first characterize the dynamic relationship
between the optimal signal power allocation and the optimal
jamming power allocation in the minimax game. Second, we
show that for correlated fading channels, the closed-form
solution for the saddle point can be obtained using a two-
step water pouring algorithm. As a special case, it is shown
that when the channel for the authorized user and the channel
for the jammer are relatively flat with respect to each other,
i.e., their magnitude spectrum is proportional to each other,
the closed-form solution for the saddle point can be obtained.
From the arbitrarily varying channel (AVC) point of view, the
correlation between the user channel and the jamming channel
can be regarded as an indicator of possible symmetricity
between the user and the jammer. It is also observed that as
long as the cross-correlation between the user channel and
the jammer channel is reasonably high, the two-step water
pouring algorithm can still provide a much better solution
than uniform power allocation. Third, we extend the two-step
approach to an iterative water pouring algorithm. The iterative
algorithm can find a numerical solution to the saddle point for
arbitrary fading channels. It is observed that this algorithm
delivers a solution that has a notable advantage over uniform
power allocation for both the authorized user and the jammer.
Simulation examples are provided to illustrate our findings for
both the AWGN channels and the frequency selective fading
channels.

The rest of the paper is organized as follows. In Section
II, the problem is formulated after the system model de-
scription. The minimax problem in the zero-sum game with
an authorized user and a jammer under AWGN channels is
theoretically solved in Section III. The gaming problem under
frequency selective fading channels is investigated in Section
IV. Numerical analysis is provided in Section V and we
conclude in Section VI.

II. PROBLEM FORMULATION

A. System Description

We consider a multiband communication system1, where
there is an authorized user and a jammer who are operating
against each other, without knowledge on the strategy applied
by its opponent. Assuming that both the authorized user and
the jammer can choose to operate over all or part of the

1We assume multiband communications here, but the derivation in this
paper is readily applicable to multicarrier communications (e.g., OFDM), if
the authorized user and the jammer apply the same transceiver structure.
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Nc frequency bands or subchannels (not necessarily being
consecutive), each of which has a bandwidth B

Nc
Hz. We start

with the AWGN channel model, where all the subchannels
have equal noise power, and then extend to the frequency
selective fading scenario. In the AWGN case, assuming the
total noise power over the entire spectrum is PN , then the noise
power corresponding to each subchannel is PN

Nc
. We assume the

jamming is Gaussian over each jammed subchannel, because
Gaussian jamming is the worst jamming when the jammer
has no knowledge of the authorized transmission [12]. In
the following, let Ps denote the total signal power for the
authorized user, and PJ the total jamming power.

The authorized user is always trying to maximize its ca-
pacity under jamming by applying an optimal strategy on
subchannel selection (either all or part) and power allocation.
On the other hand, the jammer tries to find an optimal strategy
that can minimize the capacity of the authorized user. In this
paper, we consider the case where both the authorized user
and the jammer use mixed strategies. It is assumed that both
the authorized user and the jammer can adjust their subchannel
selection and power allocation swiftly and randomly, such that
neither of them has sufficient time to learn and react in real
time before its opponent switches to new subchannels and/or
power levels. In other words, when the authorized user and the
jammer apply their own resource allocation strategy, they have
no knowledge of the selected subchannels and power levels of
their opponent.

B. Strategy Spaces for the Authorized User and the Jammer

Each mixed strategy applied by the authorized user is
determined by the number of activated subchannels, the
subchannel selection process and the power allocation pro-
cess. More specifically: (1) The authorized user activates
Ks (1 ≤ Ks ≤ Nc) out of Nc subchannels each time
for information transmission. (2) The subchannel selection
process is characterized using a binary indicator vector α =
[α1, α2, ..., αNc

], where each random variable αm = 1 or
0 indicates whether the mth subchannel is selected or not,
and

∑Nc

m=1 αm = Ks. Let ωs = [ωs,1, ωs,2, ..., ωs,Nc
] be

the corresponding probability vector, where ωs,m denotes the
probability that the mth subchannel is selected each time. That
is, ωs,m = Pr{αm = 1}, and

∑Nc

m=1 ωs,m = Ks. (A simple
strategy for selecting a particular number of subchannels based
on a given subchannel selection probability vector, ωs, is
illustrated in Appendix A.) (3) For notation simplicity, the
authorized user always specifies the indices of the selected
Ks subchannels as 1, 2, ...,Ks, following the order as they
appear in the original spectrum, and performs power allocation
over them. The power allocation process is characterized using
a vector Ps = [Ps,1, Ps,2, ..., Ps,Ks

], in which Ps,n denotes
the power allocated to the nth selected subchannel, and∑Ks

n=1 Ps,n = Ps is the power constraint. LetWs,Ks = {ωs =
[ωs,1, ωs,2, ..., ωs,Nc

] | 0 ≤ ωs,m ≤ 1,
∑Nc

m=1 ωs,m = Ks},
and Ps,Ks

= {Ps = [Ps,1, Ps,2, ..., Ps,Ks
] | 0 < Ps,n ≤

Ps,
∑Ks

n=1 Ps,n = Ps}. The strategy space for the authorized

user can thus be defined as

X = {(Ks,ωs,Ps) | 1 ≤ Ks ≤ Nc,ωs ∈ Ws,Ks
,Ps ∈ Ps,Ks

}.
(1)

The strategy space X covers all the possible subchannel
utilization strategies as Ks varies from 1 to Nc. Here, a
strategy (Ks,ωs,Ps) with Ks = 1 and ωs = [ 1

Nc
, · · · , 1

Nc
]

and Ps,1 = Ps, corresponds to the conventional frequency
hopping (FH) system, while a strategy (Ks,ωs,Ps) with
Ks = Nc, ωs = [1, · · · , 1] and Ps,n = Ps

Nc
, ∀n, would result

in a full band transmission with uniform power allocation.
Similarly, the jammer jams KJ (1 ≤ KJ ≤ Nc) out of

Nc subchannels each time following a binary indicator vector
β = [β1, β2, ..., βNc

] with
∑Nc

m=1 βm = KJ . The subchannel
selection process is characterized using a probability vector
ωJ = [ωJ,1, ωJ,2, ..., ωJ,Nc

], where ωJ,m = Pr{βm =

1} and
∑Nc

m=1 ωJ,m = KJ . Then the jammer specifies
the indices of the KJ jammed subchannels as 1, 2, ...,KJ

in the same manner as the authorized user, and performs
power allocation over them using a power-allocation vector
PJ = [PJ,1, PJ,2, ..., PJ,KJ

] constrained by
∑KJ

n=1 PJ,n =
PJ . Let WJ,KJ

= {ωJ = [ωJ,1, ωJ,2, ..., ωJ,Nc
] | 0 ≤

ωJ,m ≤ 1,
∑Nc

m=1 ωJ,m = KJ} and PJ,KJ
= {PJ =

[PJ,1, PJ,2, ..., PJ,KJ
] | 0 < PJ,n ≤ PJ ,

∑KJ

n=1 PJ,n = PJ},
the strategy space for the jammer can thus be defined as

Y = {(KJ ,ωJ ,PJ) | 1 ≤ KJ ≤ Nc,ωJ ∈ WJ,KJ
,PJ ∈ PJ,KJ

}.
(2)

C. The Minimax Problem in the Zero-Sum Game between the
Authorized User and the Jammer

From a game theoretic perspective, the strategic decision-
making of the authorized user and the jammer can be modeled
as a two-party zero-sum game [27], which is characterized by
a triplet (X ,Y, C), where

1) X is the strategy space of the authorized user;
2) Y is the strategy space of the jammer;
3) C is a real-valued payoff function defined on X × Y .

The interpretation is as follows. Let (x, y) denote the strategy
pair, in which x ∈ X and y ∈ Y are the strategies applied
by the authorized user and the jammer, respectively. Note that
both x and y are mixed strategies. The payoff function C(x, y)
is therefore defined as the ergodic (i.e., expected or average)
capacity of the authorized user choosing a strategy x ∈ X in
presence of the jammer choosing a strategy y ∈ Y . In other
words, C(x, y) is the amount that the authorized user wins and
simultaneously the jammer loses in the game with a strategy
pair (x, y).

Assuming that with strategy pair (x, y), the authorized
user and the jammer activate Ks and KJ channels, respec-
tively. Define AKs = {α = [α1, α2, ..., αNc ] | αm ∈
{0, 1},

∑Nc

m=1 αm = Ks}, and BKJ
= {β =

[β1, β2, ..., βNc
] | βm ∈ {0, 1},

∑Nc

m=1 βm = KJ}. Let p(α|x)
denote the probability that the subchannels selected by the
authorized user follow the indicator vector α given that the
strategy x ∈ X is applied, and p(β|y) the probability that
the subchannels selected by the jammer follow the indicator
vector β given that the strategy y ∈ Y is applied. Let Ts,m
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and TJ,m be the power allocated to the mth subchannel by
the authorized user and the jammer, respectively, which are
determined by

Ts,m =

{
Ps,gm , αm = 1,
0, αm = 0,

TJ,m =

{
PJ,qm , βm = 1,
0, βm = 0,

(3)
where gm =

∑m
i=1 αi is the new index of subchannel m

specified by the authorized user in the Ks selected subchannels
if it is activated by the authorized user (αm = 1), and
qm =

∑m
i=1 βi is the new index of subchannel m specified by

the jammer in the KJ jammed subchannels if it is activated by
the jammer (βm = 1). Note that: (i) the subchannel selection
processes used by the authorized user and the jammer are
independent of each other; and (ii) for each strategy pair (x, y),
the subchannel selection choices (α and β) are not unique for
both the authorized user and the jammer. Thus, the ergodic
capacity of the authorized user in the game with a strategy
pair (x, y) can be calculated as

C(x, y) =
∑

α∈AKs

∑
β∈BKJ

p(α|x)p(β|y)

×
Nc∑
m=1

B

Nc
log2

(
1 +

Ts,m
TJ,m + PN/Nc

)
.

(4)

In the jamming-free case, the traditional Shannon channel
capacity is obtained by maximizing the mutual information
with respect to the distribution of the user signal. When jam-
ming is around, the user still wants to maximize its capacity,
while the jammer tries to minimize the user’s capacity. This
is why the “minimax” capacity was introduced in literature
[28]–[30], for which the mutual information is maximized with
respect to the distribution of the user signal, and meanwhile
minimized with respect to the distribution of the jamming.
Now, in addition to optimizing the signal distribution, both
the authorized user and the jammer can also choose which
subchannels to use or activate, and how much power to be
allocated to each activated subchannel. That is, the minimax
capacity is obtained through the optimization with respect to
the strategies from both the authorized user and the jammer
sides, in addition to the signal distributions.

Based on the definitions and reasoning above, the minimax
capacity of the authorized user is defined as

C(x∗, y∗) = max
x∈X

min
y∈Y

C(x, y) = min
y∈Y

max
x∈X

C(x, y). (5)

It can be seen from (5) that the authorized user tries to choose
an optimal transmission strategy x∗ ∈ X to maximize its
capacity, while the jammer tries to minimize it by choosing an
optimal jamming strategy y∗ ∈ Y . The capacity C(x∗, y∗) in
(5) can be achieved when a saddle point strategy pair (x∗, y∗)
is chosen, which is characterized by [2], [15]

C(x, y∗) ≤ C(x∗, y∗) ≤ C(x∗, y), ∀x ∈ X , y ∈ Y. (6)

This implies that: with strategy x∗, the minimal capacity that
can be achieved by the authorized user is C(x∗, y∗), no matter
which strategy is applied by the jammer; on the other hand,
if the jammer applies strategy y∗, the maximal capacity that
can be achieved by the authorized user is also C(x∗, y∗), no

matter which strategy is applied by the authorized user. As a
result, to find the optimal transmission strategy and the worst
jamming strategy under the power constraints Ps and PJ , we
need to find the saddle point strategy pair (x∗, y∗).

III. OPTIMAL STRATEGY FOR MULTIBAND
COMMUNICATIONS UNDER JAMMING

OVER AWGN CHANNELS

Recall that Ks denotes the number of subchannels activated
by the authorized user, and KJ the number of subchannels
interfered by the jammer. In this section, we derive the saddle
point strategy pair (x∗, y∗) in two steps: (1) For any fixed Ks

and KJ with 1 ≤ Ks,KJ ≤ Nc, calculate the corresponding
minimax capacity and denote it by C̃(Ks,KJ). Let Ks =
1, 2, ..., Nc and KJ = 1, 2, ..., Nc, we can obtain an Nc ×Nc
payoff matrix C̃. (2) For the derived payoff matrix C̃, locate its
saddle point, and then the minimax capacity of the authorized
user in (5) can be calculated accordingly.

A. The Minimax Problem for Fixed Ks and KJ

With fixed Ks and KJ , the strategy space for the autho-
rized user becomes X̃Ks

= {(Ks,ωs,Ps) | Ks Fixed,ωs ∈
Ws,Ks ,Ps ∈ Ps,Ks} ⊂ X , and similarly the strategy space for
the jammer becomes ỸKJ

= {(KJ ,ωJ ,PJ) |KJ Fixed,ωJ ∈
WJ,KJ

,PJ ∈ PJ,KJ
} ⊂ Y . It should be noted that the user-

activated subchannels and the jammed subchannels may vary
from time to time, although the total number of the user-
activated or jammed subchannels is fixed.

We first present two lemmas on the concavity/convexity
property of two real-valued functions that will be used af-
terwards. More information on concavity and convexity can
be found in [31].

Lemma 1. For any v ≥ 0 and a > 0, the real-valued function,
f(v) = log2(1 +

v
a ), is concave.

Proof: The second-order derivative, f ′′(v) =
− 1

ln 2
1

(v+a)2 < 0, for any v ≥ 0 and a > 0.

Lemma 2. For any v ≥ 0, a > 0 and b > 0, the real-valued
function, f(v) = log2(1 +

a
v+b ), is convex.

Proof: The second-order derivative, f ′′(v) =
a

ln 2
(2v+a+2b)

(v+a)2(v+a+b)2 > 0, for any v ≥ 0, a > 0 and
b > 0.

The solution2 to the minimax problem for fixed Ks and KJ

is given in Theorem 1.

Theorem 1. Let Ks be the number of subchannels activated
by the authorized user, and KJ the number of subchannels
interfered by the jammer. For any fixed (Ks,KJ) pair, the
saddle point of C(x, y) under the power constraints Ps and
PJ for x ∈ X̃Ks and y ∈ ỸKJ

is reached when both authorized
user and the jammer choose to apply uniform subchannel
selection and uniform power allocation strategy. That is, for
fixed Ks and KJ , the saddle point strategy pair (x̃∗, ỹ∗) that

2The uniqueness of the solution is discussed in Appendix B.
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satisfies

C(x̃, ỹ∗) ≤ C(x̃∗, ỹ∗) ≤ C(x̃∗, ỹ), ∀x̃ ∈ X̃Ks
, ỹ ∈ ỸKJ

,
(7)

is given by x̃∗ = (Ks,ω
∗
s,P
∗
s) with{

ω∗s,m = Ks/Nc, m = 1, 2, ..., Nc,
P ∗s,n = Ps/Ks, n = 1, 2, ...,Ks,

(8)

and ỹ∗ = (KJ ,ω
∗
J ,P

∗
J) with{

ω∗J,m = KJ/Nc, m = 1, 2, ..., Nc,

P ∗J,n = PJ/KJ , n = 1, 2, ...,KJ .
(9)

In this case, the minimax capacity of the authorized user is
given by

C̃(Ks,KJ) =Ks
KJ

Nc

B

Nc
log2

(
1 +

Ps/Ks

PJ/KJ + PN/Nc

)
+Ks

(
1− KJ

Nc

)
B

Nc
log2

(
1 +

Ps/Ks

PN/Nc

)
.

(10)

Proof: (1) We first prove that the (x̃∗, ỹ∗) pair defined in
(8) and (9) satisfies the left part of (7), C(x̃, ỹ∗) ≤ C(x̃∗, ỹ∗).
Assume the jammer applies the strategy ỹ∗, which means
uniform subchannel selection and uniform power allocation
as indicated in (9). For the authorized user who applies an
arbitrary strategy x̃ ∈ X̃Ks , we specified the indices of
the activated Ks subchannels as n = 1, 2, ...,Ks. With any
subchannel selection probability vector ωs ∈ Ws,Ks

, for each
subchannel activated by the authorized user, the probability
that it is jammed is always KJ

Nc
, since the jammer jams

each subchannel with a uniform probability ω∗J,m = KJ

Nc
, for

any m = 1, 2, ..., Nc. Accordingly, the probability that each
subchannel is not jammed is 1− KJ

Nc
.

Considering all the subchannels activated by the authorized
user, when the authorized user applies an arbitrary strategy x̃ ∈
X̃Ks

, and the jammer applies strategy ỹ∗, the ergodic capacity
can be calculated as the weighted average of the capacity under
jamming and the capacity in the jamming-free case,

C(x̃, ỹ∗) =

Ks∑
n=1

[
KJ

Nc

B

Nc
log2

(
1 +

Ps,n
PJ/KJ + PN/Nc

)
+

(
1− KJ

Nc

)
B

Nc
log2

(
1 +

Ps,n
PN/Nc

)]
=
KJ

Nc

B

Nc

Ks∑
n=1

log2

(
1 +

Ps,n
PJ/KJ + PN/Nc

)

+

(
1− KJ

Nc

)
B

Nc

Ks∑
n=1

log2

(
1 +

Ps,n
PN/Nc

)
.

(11)

Note that
∑Ks

n=1 Ps,n = Ps, and applying the concavity
property proved in Lemma 1, we have

C(x̃, ỹ∗) ≤Ks
KJ

Nc

B

Nc
log2

(
1 +

Ps/Ks

PJ/KJ + PN/Nc

)
+Ks

(
1− KJ

Nc

)
B

Nc
log2

(
1 +

Ps/Ks

PN/Nc

)
=C(x̃∗, ỹ∗),

(12)

where the equality holds if and only if Ps,n = Ps

Ks
,∀n.

(2) Proof of the right part of (7), C(x̃∗, ỹ∗) ≤ C(x̃∗, ỹ).
In this part of the proof, we will show that applying uniform
subchannel selection and uniform power allocation strategy
x̃∗ at the authorized user side guarantees a lower bound
on its capacity, no matter what strategy is applied by the
jammer. Assume the authorized user applies the strategy x̃∗

as indicated in (8). For the jammer who applies an arbitrary
strategy ỹ ∈ ỸKJ

, we specified the indices of the jammed
KJ subchannels as n = 1, 2, ...,KJ . With any subchannel
selection probability vector ωJ ∈ WJ,KJ

, for each jammed
or jamming-free subchannel, the probability that it serves as
a subchannel activated by the authorized user is always Ks

Nc
.

Hence, the average number3 of jammed subchannels which are
also activated by the authorized user is KJKs

Nc
, and the average

number of jamming-free subchannels which are activated by
the authorized user would be (Nc −KJ)

Ks

Nc
= Ks(1− KJ

Nc
).

Considering both the jammed and jamming-free subchan-
nels, when the jammer applies an arbitrary strategy ỹ ∈ ỸKJ

,
and the authorized user applies strategy x̃∗, the ergodic capac-
ity can be calculated as

C(x̃∗, ỹ) =

KJ∑
n=1

Ks

Nc

B

Nc
log2

(
1 +

Ps/Ks

PJ,n + PN/Nc

)
+Ks

(
1− KJ

Nc

)
B

Nc
log2

(
1 +

Ps/Ks

PN/Nc

)
.

(13)

Note that
∑KJ

n=1 PJ,n = PJ , and applying the convexity
property proved in Lemma 2, we have

C(x̃∗, ỹ) ≥Ks
KJ

Nc

B

Nc
log2

(
1 +

Ps/Ks

PJ/KJ + PN/Nc

)
+Ks

(
1− KJ

Nc

)
B

Nc
log2

(
1 +

Ps/Ks

PN/Nc

)
=C(x̃∗, ỹ∗),

(14)

where the equality holds if and only if PJ,n = PJ

KJ
,∀n.

B. Capacity Optimization over Ks and KJ

In Section III-A, we derived the closed-form minimax ca-
pacity of the authorized user for fixed Ks and KJ . Considering
all possible Ks and KJ , we would have an Nc×Nc matrix C̃,
in which C̃(Ks,KJ) is the minimax capacity of the authorized
user for fixed Ks and KJ , as indicated in (10). Now finding
the minimax capacity in (5) can be reduced to finding the
saddle point of the matrix C̃, that is, the entry C̃(i, j), which is
simultaneously the minimum of the ith row and the maximum
of the jth column.

To locate the saddle point of matrix C̃, we need Lemma 3.

Lemma 3. For the capacity function

C̃(Ks,KJ) =Ks
KJ

Nc

B

Nc
log2

(
1 +

Ps/Ks

PJ/KJ + PN/Nc

)
+Ks

(
1− KJ

Nc

)
B

Nc
log2

(
1 +

Ps/Ks

PN/Nc

)
,

(15)

3The ensemble average might not be an integer. Nevertheless, the capacity
calculation would still be accurate from a statistical perspective.
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we have

∂C̃

∂Ks
> 0, for any Ks = 1, 2, ..., Nc, (16)

and
∂C̃

∂KJ
< 0, for any KJ = 1, 2, ..., Nc. (17)

Proof: See Appendix C.
Following Lemma 3, we have the following theorem.

Theorem 2. The saddle point of matrix C̃ is indexed by
(K∗s ,K

∗
J) = (Nc, Nc). Equivalently, for all 1 ≤ Ks,KJ ≤

Nc, we have

C̃(Ks, Nc) ≤ C̃(Nc, Nc) ≤ C̃(Nc,KJ). (18)

Combining Theorems 1 and 2, we can obtain the saddle
point to the original minimax problem in (5) over strategy
spaces X and Y . The result is summarized in Theorem 3.

Theorem 3. Assume that an authorized user and a jammer are
operating against each other over the same AWGN channel
consisting of Nc subchannels. Either for the authorized user
to maximize its capacity, or for the jammer to minimize the
capacity of the authorized user, the best strategy for both
of them is to distribute the signal power or jamming power
uniformly over all the Nc subchannels. In this case, the
minimax capacity of the authorized user is given by

C = B log2

(
1 +

Ps
PJ + PN

)
, (19)

where B is the bandwidth of the overall spectrum, PN the
noise power, Ps and PJ the total power for the authorized
user and the jammer, respectively.

Proof: The proof follows directly from Theorems 1 and
2. The minimax capacity in (19) can be derived simply by
substituting Ks = KJ = Nc into (10).

IV. OPTIMAL STRATEGY FOR MULTIBAND
COMMUNICATIONS UNDER JAMMING

OVER FREQUENCY SELECTIVE FADING CHANNELS

In this section, we investigate the optimal strategies for both
the authorized user and the jammer in multiband communica-
tions under frequency selective fading channels.

A. The Minimax Problem for Fading Channels

Recall that the power allocation for the authorized user
is characterized using the vector Ps = [Ps,1, Ps,2, ..., Ps,Nc ],
where Ps,i denotes the power allocated to the ith subchan-
nel, and

∑Nc

i=1 Ps,i = Ps is the signal power constraint.
Similarly, the power allocation vector for the jammer is
PJ = [PJ,1, PJ,2, ..., PJ,Nc

], and
∑Nc

i=1 PJ,i = PJ is the
jamming power constraint. As in the OFDM systems, here we
assume that all the subchannels are narrowband and have flat
magnitude spectrum. Let Hs = [Hs,1, Hs,2, ...,Hs,Nc ] be the
frequency domain channel response vector for the authorized
user, and HJ = [HJ,1, HJ,2, ...,HJ,Nc

] the frequency domain
channel response vector for the jammer, respectively. Under

the settings specified above, the capacity of the authorized
user can be calculated as

C(Ps,PJ) =
Nc∑
i=1

B

Nc
log2

(
1 +

|Hs,i|2Ps,i
|HJ,i|2PJ,i + σ2

n

)

=

Nc∑
i=1

B

Nc
log2

1 +
Ps,i

|HJ,i|2
|Hs,i|2PJ,i + σ2

n,i

 ,

(20)

where σ2
n = PN

Nc
is the original noise power for each subchan-

nel, and σ2
n,i =

σ2
n

|Hs,i|2 .
Define Ps = {Ps = [Ps,1, Ps,2, ..., Ps,Nc

] | 0 ≤
Ps,i ≤ Ps,

∑Nc

i=1 Ps,i = Ps}, and PJ = {PJ =

[PJ,1, PJ,2, ..., PJ,Nc ] | 0 ≤ PJ,i ≤ PJ ,
∑Nc

i=1 PJ,i = PJ}.
The minimax capacity of the authorized user is defined as

C(P∗s,P
∗
J) = max

P∗
s∈Ps

min
P∗
J∈PJ

C(Ps,PJ) = min
P∗
J∈PJ

max
P∗
s∈Ps

C(Ps,PJ).

(21)
As before, the authorized user tries to apply optimal signal
power allocation P∗s ∈ Ps to maximize its capacity, while
the jammer tries to minimize it by applying optimal jamming
power allocation P∗J ∈ PJ .

Theorem 4. Assume that there are Nc available sub-
channels. Let Hs = [Hs,1, Hs,2, ...,Hs,Nc ] and HJ =
[HJ,1, HJ,2, ...,HJ,Nc

] denote the frequency domain channel
response vector for the authorized user and the jammer, re-
spectively. Assuming zero-mean white Gaussian noise of vari-
ance σ2

n over the entire band, let σ2
n = [σ2

n,1, σ
2
n,2, ..., σ

2
n,Nc

],

where σ2
n,i =

σ2
n

|Hs,i|2 . The optimal power-allocation pair for
the authorized user and the jammer under the signal power
constraint

∑Nc

i=1 P
∗
s,i = Ps and the jamming power constraint∑Nc

i=1 P
∗
J,i = PJ , (P∗s,P

∗
J), which satisfies

C(Ps,P∗J) ≤ C(P∗s,P∗J) ≤ C(P∗s,PJ), ∀Ps ∈ Ps,PJ ∈ PJ ,
(22)

can be characterized by
P ∗J,i = sgn(P ∗s,i)

(
c1 −

|Hs,i|2

|HJ,i|2
σ2
n,i

)+

, ∀i,

P ∗s,i =

(
c2 −

|HJ,i|2

|Hs,i|2
P ∗J,i − σ2

n,i

)+

, ∀i,

(23a)

(23b)

where (x)+ = max{0, x}, sgn(·) is the sign function, and c1,
c2 are constants determined by the power constraints.

Proof: (1) We first prove that the (P∗s,P
∗
J) pair de-

fined in (23) satisfies the left part of (22), C(Ps,P∗J) ≤
C(P∗s,P

∗
J), ∀Ps ∈ Ps. With the jammer applying power

allocation P∗J , the equivalent jamming power for the ith
subchannel after fading and equalization would be |HJ,i|2

|Hs,i|2P
∗
J,i,

as shown in (20). Taking both the jamming and the noise into
account, the overall interference and noise power level for the
ith subchannel at the receiver would be |HJ,i|2

|Hs,i|2P
∗
J,i+σ

2
n,i. As a

result, the problem now turns to be the capacity maximization
problem for multiband communications with nonuniform noise
power levels. To this end, it is well known that the classical
water pouring algorithm produces the best solution [32]. In this
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particular case, the water pouring solution for optimal signal
power allocation would be

P ∗s,i =

(
c2 −

|HJ,i|2

|Hs,i|2
P ∗J,i − σ2

n,i

)+

, i = 1, 2, ..., Nc, (24)

which maximizes the capacity of the authorized user,
C(P∗s,P

∗
J), while the jammer applying power allocation P∗J .

Note that c2 is a constant that should be chosen such that
the power constraint for the authorized user is satisfied, i.e.,∑Nc

i=1 P
∗
s,i = Ps.

(2) Proof of the right part, C(P∗s,P
∗
J) ≤ C(P∗s,PJ), ∀PJ ∈

PJ . To this end, we need to find the optimal jamming power al-
location P∗J , which can minimize the capacity of the authorized
user applying power allocation P∗s . Let γi =

|HJ,i|2
|Hs,i|2 , ∀i. With

the authorized user applying power allocation P∗s , following
(20), the optimization problem for jamming power allocation
can be formulated as

min
PJ∈PJ

Nc∑
i=1

B

Nc
log2

(
1 +

P ∗s,i
γiPJ,i + σ2

n,i

)
; (25a)

s.t.

Nc∑
i=1

PJ,i = PJ , (25b)

PJ,i ≥ 0, ∀i. (25c)

Note that in this optimization problem, we have both equality
and inequality constraints. Hence, we need to take the Karush-
Kuhn-Tucker (KKT) approach [31], which generalizes the
conventional method of Lagrange multipliers by allowing
inequality constraints. As observed in (24), for P ∗s,i > 0,

P ∗s,i = c2 − |HJ,i|2
|Hs,i|2P

∗
J,i − σ2

n,i. In addition, the capacity of
any subchannel with zero signal power (i.e., P ∗s,i = 0) is zero.
Define

J(PJ ,u, v) =
Nc∑
i=1

B

Nc
log2

(
1 +

P ∗s,i
γiPJ,i + σ2

n,i

)

− uiPJ,i + v

(
Nc∑
i=1

PJ,i − PJ

)
=

∑
i∈{i|P∗

s,i>0}

B

Nc
log2

c2
γiPJ,i + σ2

n,i

− uiPJ,i + v

(
Nc∑
i=1

PJ,i − PJ

)
,

(26)

where u = [u1, u2, ..., uNc
] and v are Lagrange multipliers

that should satisfy the KKT conditions as below:

∂J

∂PJ,i
= 0, uiPJ,i = 0, ui ≥ 0, ∀i. (27)

The first-order partial differentiation with respect to each PJ,i
can be calculated as

∂J

∂PJ,i
=

{
− B
Nc

1
ln 2

γi
γiPJ,i+σ2

n,i
− ui + v, P ∗s,i > 0,

−ui + v, P ∗s,i = 0.
(28)

For each subchannel with nonzero signal power (i.e., P ∗s,i >
0), applying the KKT conditions and eliminating ui, we have v − B

Nc

1
ln 2

γi
γiPJ,i+σ2

n,i
≥ 0,

PJ,i

[
v − B

Nc

1
ln 2

γi
γiPJ,i+σ2

n,i

]
= 0.

(29)

Solving (29), the optimal jamming power for the ith subchan-
nel (with nonzero signal power) can be obtained as

P ∗J,i =

(
B

Nc

1

ln 2

1

v
− 1

γi
σ2
n,i

)+

. (30)

Similarly, for each subchannel with zero signal power (i.e.,
P ∗s,i = 0), applying the KKT conditions and eliminating ui,
we have vPJ,i = 0. It is observed from (29) that v > 0, so
the optimal jamming power for the ith subchannel (with zero
signal power) is P ∗J,i = 0. Let c1 = B

Nc

1
ln 2

1
v , and replace γi

with |HJ,i|2
|Hs,i|2 , we can summarize the result as

P ∗J,i =

{ (
c1 − |Hs,i|2

|HJ,i|2σ
2
n,i

)+
, P ∗s,i > 0,

0, P ∗s,i = 0,
(31)

where c1 should be chosen such that the power constraint
for the jammer is satisfied, i.e.,

∑Nc

i=1 P
∗
J,i = PJ . This is

exactly the optimal jamming power allocation as expressed
in (23a), which minimizes the capacity of the authorized
user, C(P∗s,P

∗
J), given that the authorized user applies power

allocation P∗s .

B. Correlated Fading Channels: A Two-Step Water Pouring
Algorithm

Theorem 4 characterizes the dynamic relationship between
the optimal signal power allocation P∗s and the optimal jam-
ming power allocation P∗J . As shown in (23), due to the mutual
dependency between P∗s and P∗J , it is generally difficult to
find an exact solution for them. However, in this subsection,
we will show that if the channels of the authorized user and
the jammer are correlated, the saddle point, (P∗s,P

∗
J), can be

calculated explicitly using a two-step water pouring algorithm.

Theorem 5. (A Two-Step Water Pouring Algorithm) With the
same conditions as in Theorem 4, the saddle point, which
indicates the optimal signal power allocation and the optimal
jamming power allocation, is given by

P ∗J,i =

(
c1 −

|Hs,i|2

|HJ,i|2
σ2
n,i

)+

, ∀i,

P ∗s,i =

(
c2 −

|HJ,i|2

|Hs,i|2
P ∗J,i − σ2

n,i

)+

, ∀i,

(32a)

(32b)

as long as

|HJ,i|2 ≤
σ2
n

c1
or
|HJ,i|2

|Hs,i|2
<
c2
c1
, ∀i, (33)

where (x)+ = max{0, x}, and c1, c2 are constants that should
be chosen such that the power constraints are satisfied, i.e.,∑Nc

i=1 P
∗
s,i = Ps and

∑Nc

i=1 P
∗
J,i = PJ .

Proof: The basic idea here is that given zero signal power
for a particular subchannel, it is apparently not necessary to



8 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. X, NO. X, XXX 2016

allocate positive jamming power in that subchannel; at the
same time, over all the subchannels with nonzero signal power,
the optimal jamming power allocation can be formed using
the water pouring algorithm. We start by applying the water
pouring algorithm over all subchannels,

P ∗J,i =

(
c1 −

|Hs,i|2

|HJ,i|2
σ2
n,i

)+

, i = 1, 2, ..., Nc. (34)

For the optimality of (34), we further need to ensure that
P ∗J,i = 0, whenever P ∗s,i = 0.

As can be seen, a violation occurs (P ∗J,i > 0 and P ∗s,i = 0),
if and only if for some subchannel indexed by i, P ∗J,i = c1 − |Hs,i|2

|HJ,i|2σ
2
n,i > 0,

c2 − |HJ,i|2
|Hs,i|2P

∗
J,i − σ2

n,i ≤ 0,
(35)

which yields

|HJ,i|2 >
σ2
n

c1
and
|HJ,i|2

|Hs,i|2
≥ c2
c1
. (36)

Note that σ2
n,i =

σ2
n

|Hs,i|2 . Hence, the conditions characterized
in (33) ensure that no violation occurs, and therefore the saddle
point calculated by (32) is valid for both capacity maximiza-
tion by the authorized user and capacity minimization by the
jammer.

In the following, we consider a special case where the
channels corresponding to the authorized user and the jam-
mer are relatively flat with respect to each other, that is,
their magnitude spectrum is proportional to each other, i.e.,
|HJ,i|2
|Hs,i|2 = γ, ∀i. As will be shown in Corollary 1, when
the user channel and the jammer channel are relatively flat
with respect to each other, the conditions in (33) are always
satisfied, and the saddle point calculation can be simplified
accordingly.

Corollary 1. With the same conditions as in Theorem 4, if the
magnitude spectrum of the channels for the authorized user
and the jammer is proportional to each other, i.e., |HJ,i|2

|Hs,i|2 =
γ, ∀i, the saddle point, which indicates the optimal signal
power allocation and the optimal jamming power allocation,
can be calculated as P ∗J,i =

(
c1 − 1

γσ
2
n,i

)+
, ∀i,

P ∗s,i =
(
c2 − γP ∗J,i − σ2

n,i

)+
, ∀i,

(37)

where (x)+ = max{0, x}, and c1, c2 are constants that should
be chosen such that the power constraints are satisfied, i.e.,∑Nc

i=1 P
∗
s,i = Ps and

∑Nc

i=1 P
∗
J,i = PJ .

Proof: Note that with |HJ,i|2
|Hs,i|2 = γ, ∀i, (32) reduces to

(37). Following Theorem 5, we only need to show that the
conditions specified in (33) are satisfied.

First, we show that the constants c1, c2 resulted from
(37) and the power constraints always satisfy c2

c1
> γ. This

is proved by contradiction as follows. Suppose c2
c1
≤ γ.

Following (37), for any i = 1, 2, ..., Nc, P ∗J,i ≥ c1 − 1
γσ

2
n,i.

Thus, c2 − γP ∗J,i − σ2
n,i ≤ c2 − γ(c1 − 1

γσ
2
n,i) − σ2

n,i =
c2−γc1 ≤ 0. This implies that for all subchannels, we always

have P ∗s,i =
(
c2 − γP ∗J,i − σ2

n,i

)+
= 0, which contradicts with

the power constraint that
∑Nc

i=1 P
∗
s,i = Ps. As a result, we must

have c2
c1
> γ.

It then follows that for any subchannel, we always have
|HJ,i|2
|Hs,i|2 = γ < c2

c1
. This ensures that the conditions specified

in (33) are always satisfied. Hence, the solution calculated by
(37) must be a valid saddle point.

Furthermore, if the magnitude spectrum of channels for the
authorized user and the jammer is equal to each other, i.e.,
|HJ,i|2
|Hs,i|2 = γ = 1, ∀i, the two-step water pouring algorithm in
(37) can be graphically illustrated in Fig. 1, where the saddle
point can simply be obtained by pouring all the signal power
after pouring all the jamming power into a tank with given
noise power levels. We would like to point out that under
AWGN channels, the noise power levels are flat; hence, the
water pouring process here would result in uniform power
allocation for both the jammer and the authorized user, which
echoes the results in Section III.

Fig. 1. Water pouring under jamming with equal channel magnitude spectrum

for the authorized user and the jammer (i.e.,
|HJ,i|2

|Hs,i|2
= γ = 1, ∀i).

Discussions: Theorem 5 provides an efficient two-step
water pouring algorithm to calculate the saddle point of the
minimax problem. This algorithm guarantees a valid saddle
point under certain conditions as illustrated in (33). Corollary 1
further shows a sufficient (but may not be necessary) condition
for (33) being satisfied: the channels for the authorized user
and the jammer are relatively flat with respect to each other,
i.e., their magnitude spectrum is proportional to each other.
From the arbitrarily varying channel (AVC) [5], [6] point
of view, the correlation between the user channel and the
jamming channel can be regarded as an indicator of possible
symmetricity between the user and the jammer. In the case
that the user channel and the jammer channel are not relatively
flat with respect to each other, as shown in Section V-B, as
long as the cross correlation between the two channels is
reasonably high, we found that the algorithm in Theorem 5
can still provide a much better solution than uniform power
allocation.



SONG et al.: OPTIMAL MULTIBAND TRANSMISSION UNDER HOSTILE JAMMING 9

C. Arbitrary Fading Channels: An Iterative Water Pouring
Algorithm

The two-step water pouring algorithm in Theorem 5 is a
very efficient solution for correlated fading channels. However,
if the channels of the authorized user and the jammer are not
correlated, the algorithm needs to be extended. Motivated by
[33], in this subsection, we will propose an iterative water
pouring algorithm, which is able to find a numerical solution
to the saddle point for arbitrary fading channels.

We first begin with the two-step water pouring algorithm in
Theorem 5, since it is a good starting point with possibly only
a few violations against (33). We can then try to remove or at
least alleviate the violations identified. Recall that in the two-
step water pouring algorithm, we first allocate the jamming
power by

P ∗J,i =

(
c1 −

|Hs,i|2

|HJ,i|2
σ2
n,i

)+

, ∀i, (38)

which is equivalent to

|HJ,i|2

|Hs,i|2
P ∗J,i =

(
|HJ,i|2

|Hs,i|2
c1 − σ2

n,i

)+

, ∀i. (39)

The physical meaning of (39) is that: for each subchannel i
with positive jamming power allocation (i.e., P ∗J,i > 0), the

effective jamming power, |HJ,i|2
|Hs,i|2P

∗
J,i, plus the noise power

level, σ2
n,i, should be |HJ,i|2

|Hs,i|2 c1. However, if |HJ,i|2
|Hs,i|2 c1 > c2,

the allocated jamming power for this subchannel would be
more than necessary. The underlying argument is that: to
prevent or discourage the transmission of the authorized user
in a particular subchannel, it would be good enough to
make sure the water level after jamming power allocation,
|HJ,i|2
|Hs,i|2P

∗
J,i+σ

2
n,i, reaches c2. In this case, according to (32b),

the authorized user would have already been discouraged from
allocating any power in this subchannel. Hence, any jamming
power that results into a water level higher than c2 would
be more than necessary. Based on the reasoning above, (39)
should be revised to

|HJ,i|2

|Hs,i|2
P ∗J,i =

[
min(

|HJ,i|2

|Hs,i|2
c1, c2)− σ2

n,i

]+
, ∀i, (40)

which is equivalent to

P ∗J,i =

[
min(c1,

|Hs,i|2

|HJ,i|2
c2)−

|Hs,i|2

|HJ,i|2
σ2
n,i

]+
, ∀i. (41)

Replacing the jamming power allocation in Theorem 5 by (41),
we have

P ∗J,i =

[
min(c1,

|Hs,i|2

|HJ,i|2
c2)−

|Hs,i|2

|HJ,i|2
σ2
n,i

]+
, ∀i,

P ∗s,i =

(
c2 −

|HJ,i|2

|Hs,i|2
P ∗J,i − σ2

n,i

)+

, ∀i.

(42a)

(42b)

Then we can approximate the optimal power allocation pair
by alternatively running (42a) and (42b) until it converges.
Following this idea, we propose an iterative water pouring
algorithm, which is summarized in Table I.

TABLE I
THE ITERATIVE WATER POURING ALGORITHM.

Step 1. Run the two-step water pouring algorithm once:
1) Allocate jamming power by

P ∗J,i =

(
c1 −

|Hs,i|2

|HJ,i|2
σ2
n,i

)+

, ∀i;
2) Allocate user signal power by

P ∗s,i =

(
c2 −

|HJ,i|2

|Hs,i|2
P ∗J,i − σ

2
n,i

)+

, ∀i.

Step 2. Exit if no violations, i.e., |HJ,i|2 ≤
σ2
n
c1

or
|HJ,i|2

|Hs,i|2
< c2

c1
, ∀i;

Step 3. Repeat the following water pouring steps until convergence:
1) Allocate jamming power by

P ∗J,i =

[
min(c1,

|Hs,i|2

|HJ,i|2
c2)−

|Hs,i|2

|HJ,i|2
σ2
n,i

]+
, ∀i;

2) Allocate user signal power by

P ∗s,i =

(
c2 −

|HJ,i|2

|Hs,i|2
P ∗J,i − σ

2
n,i

)+

, ∀i.

It should be noted that: for the jamming power allocation
in step 3, c2 is known from previous calculations. As a result,
for each water pouring step throughout the algorithm, there is
strictly only one constant unknown, and it can be determined
by an efficient binary search algorithm [34]. The convergence
analysis of the iterative water pouring algorithm can be found
in Appendix D.

V. NUMERICAL RESULTS

In this section, we evaluate the impact of different strategies
applied by the authorized user and the jammer on the capacity
of the authorized user through numerical examples. In the
following, we assume Nc = 64, B = 1 MHz, Ps = PJ = 16
W. Both AWGN channels and frequency selective fading
channels are evaluated.

A. AWGN Channels

In this subsection, we investigate AWGN channels, where
the overall signal-to-noise ratio (SNR) is set to 10dB. In light
of Theorem 1, we assume that both the authorized user and
the jammer apply uniform subchannel selection, that is, all
subchannels are equally probable to be selected.

1) Capacity v.s. Power Allocation with Fixed Ks and
KJ In this example, we evaluate the capacity of the authorized
user under different transmit and jamming power allocation
schemes. We set the power allocation vector as one whose
elements, if sorted, would form an arithmetic sequence, and
we use the maximum power difference among all the selected
subchannels as the metric of uniformity. Hence, the maximum
power difference indicates how far the power allocation is
away from being uniform, and a zero difference means uni-
form power allocation. Fig. 2 shows the results when both the
authorized user and the jammer select half of all the available
subchannels each time, while Fig. 3 corresponds to the case
where both of them select all the available subchannels. In
the 2D view, we evaluate the capacity in two scenarios: (1)
uniform jamming power allocation, while the power allocation
for the authorized user is nonuniform; (2) the case which is
exactly opposite to (1). The 3D counterpart in these two figures
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provides spacial views on the physical meanings of the derived
saddle points. Note that the saddle point is reached at one of
the vertices, hence the 3D view includes only a quarter portion
of a regular saddle-point graph.

(a) 2D view.

(b) 3D view.

Fig. 2. AWGN channels: channel capacity of given bandwidth (1 MHz) v.s.
different power allocation. Both the authorized user and the jammer select
half of all the available subchannels each time.

From Fig. 2 and Fig. 3, it can be seen that, when the number
of user-activated subchannels Ks and the number of jammed
subchannels KJ are both fixed: (1) if the jammer applies
uniform power allocation, the authorized user maximizes its
capacity when it applies uniform power allocation as well;
(2) if the authorized user applies uniform power allocation,
the jammer minimizes the capacity of the authorized user
when it applies uniform power allocation as well; (3) the
minimax capacity (the intersections in 2D view and the labeled
saddle points in 3D view) serves as a lower bound when the
authorized user applies uniform power allocation under all pos-
sible jamming power allocation schemes, and simultaneously
it serves as an upper bound when the jammer applies uniform
power allocation under all possible signal power allocation
schemes. The results above match well with Theorem 1.

2) Capacity v.s. Number of Selected Subchannels In this
example, we evaluate the capacity of the authorized user with

(a) 2D view.

(b) 3D view.

Fig. 3. AWGN channels: channel capacity of given bandwidth (1 MHz) v.s.
different power allocation. Both the authorized user and the jammer always
select all the available subchannels.

different number of selected subchannels by the authorized
user or the jammer. For each possible pair (Ks,KJ), both
the authorized user and the jammer apply uniform power
allocation. It is observed in Fig. 4 that the best strategy is to
utilize all the Nc subchannels, either for the authorized user
to maximize its capacity, or for the jammer to minimize the
capacity of the authorized user. This result matches well with
Theorem 2.

B. Frequency Selective Fading Channels

In this subsection, we investigate frequency selective fading
channels. Both the two-step water pouring algorithm for corre-
lated fading channels and the iterative water pouring algorithm
for arbitrary fading channels are evaluated.

1) Two-Step Water Pouring Algorithm for Correlated
Fading Channels To address the correlation between chan-
nels for the authorized user and the jammer, we introduce
a correlation index, λ(0 ≤ λ ≤ 1), which characterizes
how much dependence the two channels have on each other.
More specifically, in this simulation example, we generate
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(a) 2D view.

(b) 3D view.

Fig. 4. AWGN channels: channel capacity of given bandwidth (1 MHz) v.s.
number of selected subchannels.

the magnitude spectrum of channels in two steps: (1) create
two random vectors, x1 = [x1,1, x1,2, ..., x1,Nc

] and x2 =
[x2,1, x2,2, ..., x2,Nc

], in which all x1,i and x2,i are indepen-
dent random variables with uniform distribution over (0,1);
(2) generate the magnitude spectrum of the channel for the
authorized user by assigning |Hs,i|2 = x1,i, ∀i, and that for
the jammer as |HJ,i|2 = λ|Hs,i|2+(1−λ)x2,i, ∀i. Particularly,
λ = 1 generates equal channel magnitude spectrum for the
authorized user and the jammer, while λ = 0 generates
completely independent channel magnitude spectrum.

In Fig. 5, with the SNR being set to 10dB, we compare the
capacity of the authorized user in three cases with different
power allocation strategies: (1) both the authorized user and
the jammer perform power allocation by the two-step water
pouring algorithm; (2) the authorized user performs power
allocation by the two-step water pouring algorithm, while the
jammer performs uniform power allocation; (3) the jammer
performs power allocation by the two-step water pouring
algorithm, while the authorized user performs uniform power
allocation.

There are four main observations: (1) the authorized user
always has a higher capacity if he performs signal power
allocation by the two-step water pouring algorithm, compared
to uniform signal power allocation; (2) the capacity of the
authorized user decreases significantly if the channel of the
jammer is more correlated with that of the authorized user,
which implies that the jammer can enhance its jamming
effect by delivering jamming power through a channel that
is correlated with the authorized user’s channel; (3) in a more
serious case with high channel correlation, the jammer can
limit the capacity of the authorized user more effectively
by performing jamming power allocation by the two-step
water pouring algorithm, compared to uniform jamming power
allocation; (4) if the jammer is not able to achieve high channel
correlation, uniform jamming power allocation is preferred
instead of applying the two-step water pouring algorithm.

Fig. 5. Evaluation of the two-step water pouring algorithm under frequency
selective fading channels: channel capacity of given bandwidth (1 MHz) with
different power allocation v.s. varying channel correlation index λ.

In Fig. 6, with the channel correlation index being set to
λ = 0.75, we compare the capacity of the authorized user
with different power allocation versus varying SNR. It is ob-
served that: (1) with reasonably high correlation between the
user channel and the jamming channel, the power allocation
strategy given by the two-step water pouring algorithm has
a notable advantage over uniform power allocation, either for
the authorized user to maximize its capacity, or for the jammer
to minimize the capacity of the authorized user; (2) when
the SNR is sufficiently high, the jamming power allocation
produced by the two-step water pouring algorithm converges
to uniform.

2) Iterative Water Pouring Algorithm for Arbitrary
Fading Channels In this simulation, the channel magnitude
spectrum of the authorized user and the jammer are completely
independent, which is equivalent to λ = 0 in the correlated
fading channel setting. Similarly, we compare the capacity
of the authorized user in three cases using the same setting
as in the previous example, except that the two-step water
pouring algorithm is replaced by the iterative water pouring
algorithm. In Fig. 7, again, it is observed that: the iterative
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Fig. 6. Evaluation of the two-step water pouring algorithm under frequency
selective fading channels: channel capacity of given bandwidth (1 MHz) with
different power allocation v.s. varying SNR.

water pouring algorithm has a notable advantage over uniform
power allocation, either for the authorized user to maximize
its capacity, or for the jammer to minimize the capacity of the
authorized user.

Fig. 7. Evaluation of the iterative water pouring algorithm under frequency
selective fading channels: channel capacity of given bandwidth (1 MHz) with
different power allocation v.s. varying SNR.

VI. CONCLUSIONS

In this paper, we considered jamming and jamming mit-
igation as a game between a power-limited jammer and
a power-limited authorized user, who operate against each
other over the same spectrum consisting of multiple bands.
The strategic decision-making of the authorized user and the
jammer was modeled as a two-party zero-sum game, where
the payoff function is the capacity that can be achieved by
the authorized user in presence of the jammer. Under AWGN
channels, we found that either for the authorized user to

maximize its capacity, or for the jammer to minimize the
capacity of the authorized user, the best strategy for both
of them is to distribute the signal power or jamming power
uniformly over all the available spectrum. Under frequency
selective fading channels, we first characterized the dynamic
relationship between the optimal signal power allocation and
the optimal jamming power allocation in the minimax game,
and then proposed an iterative water pouring algorithm to find
the optimal power allocation schemes for both the authorized
user and the jammer. Numerical results were provided to
demonstrate the effectiveness of the proposed strategies for
both AWGN and frequency selective fading channels.

APPENDIX A
SUBCHANNEL SELECTION WITH NONUNIFORM

PREFERENCES

This appendix provides an approach to select K out of
Nc subchannels according to a probability vector ω =
[ω1, ω2, ..., ωNc

], where ωm denotes the probability that the
mth subchannel is selected each time, and

∑Nc

m=1 ωm = K.
Suppose ωm’s are rational numbers, then there exists a finite
positive integer M , such that lm =Mωm is a positive integer
for all 1 ≤ m ≤ Nc. Furthermore, we have

∑Nc

m=1 lm = KM .
The proposed approach works with the following steps:

1) Construct a K × M matrix, in which the kth (1 ≤
k ≤M ) column represents the kth subchannel selection
result; Prepare lm balls labeled “subchannel m” for all
1 ≤ m ≤ Nc, and there are

∑Nc

m=1 lm = KM balls in
total;

2) Initialization: set k = 1 as the current row to be filled,
m = 1 as the current subchannel to be worked on, and
r = M as the number of empty entries for the current
row;

3) Select l1 entries randomly from the 1st (k = 1) row
of the matrix, and fill them with all the l1 balls. For
k ≥ 1 and m ≥ 2, placement of the lm balls labeled
“subchannel m” has two cases:
• If lm ≤ r, the current row has a capacity large

enough to accommodate all the lm balls. Select lm
entries randomly from the kth row of the matrix, and
fill them with all the lm balls. Update the number of
empty entries for the current row by r ← (r−lm); if
all empty entries of the current row are filled, move
to the next row by setting k ← (k+1) and r ←M .

• If lm > r, the lm balls have to be split into the
current row and the next row. First fill the r empty
entries of the kth row with r out of lm balls; then
select lm−r out of M−r entries randomly from the
(k+1)th row, and fill them with the remaining lm−r
balls. Note that there are only M − r entries in the
new row available here, since the r columns already
containing balls labeled “subchannel m” have to be
avoided. Update the number of empty entries for
the current row by r ← [M − (lm− r)], and set the
current row by k ← (k + 1).

4) Set m← (m+ 1) and repeat 4) until all KM balls are
placed in the K ×M matrix;
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5) Fetch each column in the matrix to generate the sub-
channel selection results for M consecutive time slots,
and repeat all the steps above until all information
transmission is done.

In the following, we justify that the probability of the mth
subchannel being selected each time is exactly the desired
ωm. For each possible 1 ≤ m ≤ Nc, the number of balls
labeled “subchannel m” is lm = Mωm ≤ M . According
to the approach above, all the lm balls can be placed into
at most two rows in the matrix. Denote Pm,k as the prob-
ability that the mth subchannel is chosen in the kth row.
Then Pm,k = rk

M , where rk is the number of balls labeled
“subchannel m” that have been placed in the kth row of
the matrix, since the mth subchannel would appear rk times
in the kth place out of the total M times of subchannel
selection. If the lm balls are placed into only one row, e.g.,
the k0th row, for each subchannel selection, Pm,k = lm

M for
k = k0, and zero elsewhere. Hence, the probability that the
mth subchannel is selected considering all possible places
would be Pm =

∑K
k=1 Pm,k = Pm,k0 = lm

M = ωm. If
they are placed into two consecutive rows, e.g., the k0th
row and the (k0 + 1)th row, then Pm,k = r

M for k = k0,
Pm,k = lm−r

M for k = k0+1, and zero elsewhere. In this case,
Pm =

∑K
k=1 Pm,k = Pm,k0 + Pm,k0+1 = r

M + lm−r
M = ωm.

As a result, we can conclude that the probability that the mth
subchannel is selected resulted from the proposed approach is
Pm = ωm.

APPENDIX B
UNIQUENESS OF THE SOLUTION TO THEOREM 1

It is stated in Theorem 1 that: assuming there are Ks sub-
channels activated by the authorized user and KJ subchannels
interfered by the jammer, the saddle point is reached when
both authorized user and the jammer choose to apply uniform
subchannel selection and uniform power allocation strategy. In
this appendix, we show the uniqueness of this solution.

First, it is impossible to have nonuniform subchannel se-
lection in a saddle point strategy pair. The reason is that: if
either the authorized user or the jammer applies nonuniform
subchannel selection, the nonuniform pattern could be detected
and utilized by the other. That is, the authorized user could
avoid the subchannels that are highly likely interfered by
the jammer, while the jammer would prefer to interfere the
subchannels that are highly likely used by the authorized user.

Second, with uniform subchannel selection for both the
authorized user and the jammer, it is impossible to have
nonuniform power allocation in a saddle point strategy pair.
We will start with the case where the authorized user tries
to maximize its capacity. We assume that the jamming power
allocation (not necessarily uniform) is characterized by P∗J =
[P ∗J,1, P

∗
J,2, ..., P

∗
J,KJ

], and different jamming power levels are
assigned to the jammed subchannel randomly. That is, if
a subchannel is jammed, the jamming power could be any
P ∗J,m(1 ≤ m ≤ KJ) with equal probability, 1

KJ
. The reason

for random assignment is similar to uniform subchannel selec-
tion, i.e., the signal power allocation with a fixed pattern could
also be detected and utilized by the jammer. Applying a similar

idea to (11) and considering all possible jamming power for
each jammed subchannel, the capacity of the authorized user
can be calculated as

C(Ps,P∗J) =
Ks∑
n=1

[
KJ

Nc

KJ∑
m=1

1

KJ

B

Nc
log2

(
1 +

Ps,n
P ∗J,m + PN/Nc

)

+

(
1− KJ

Nc

)
B

Nc
log2

(
1 +

Ps,n
PN/Nc

)]
=

1

Nc

B

Nc

KJ∑
m=1

Ks∑
n=1

log2

(
1 +

Ps,n
P ∗J,m + PN/Nc

)

+

(
1− KJ

Nc

)
B

Nc

Ks∑
n=1

log2

(
1 +

Ps,n
PN/Nc

)
.

(43)

Note that
∑Ks

n=1 Ps,n = Ps, and applying the concavity
property proved in Lemma 1, we have
Ks∑
n=1

log2

(
1 +

Ps,n

P ∗J,m + PN/Nc

)
≤ Ks log2

(
1 +

Ps/Ks

P ∗J,m + PN/Nc

)
,

(44)
and

Ks∑
n=1

log2

(
1 +

Ps,n
PN/Nc

)
≤ Ks log2

(
1 +

Ps/Ks

PN/Nc

)
. (45)

Substituting (44) and (45) into (43), we have

C(Ps,P∗J) ≤
Ks

Nc

B

Nc

KJ∑
m=1

log2

(
1 +

Ps/Ks

P ∗J,m + PN/Nc

)

+Ks

(
1− KJ

Nc

)
B

Nc
log2

(
1 +

Ps/Ks

PN/Nc

)
,

(46)

where the equality holds if and only if Ps,n = Ps

Ks
,∀n. So far,

we have proved that: with random jamming power allocation,
the authorized user can maximize its capacity only by uniform
power allocation. For the jammer to minimize the capacity of
the authorized user, we can obtain a similar result by applying
the same method.

APPENDIX C
PROOF OF LEMMA 3

To prove Lemma 3, we need the following result:

Lemma 4. For a real-valued function f(v) = ln(1+v)− v
1+v ,

f(v) > 0, for any v > 0.

Proof: When v > 0, f ′(v) = v
(1+v)2 > 0. Thus, f(v) >

f(0) = 0.
Now we are ready to prove Lemma 3.
(1) The first-order derivative of C̃ over Ks,

∂C̃

∂Ks
=
KJ

Nc

B

Nc

1

ln 2

[
ln

(
1 +

Ps

Ks

PJ

KJ
+ PN

Nc

)
−

Ps

Ks

Ps

Ks
+ PJ

KJ
+ PN

Nc

]

+

(
1− KJ

Nc

)
B

Nc

1

ln 2

[
ln

(
1 +

Ps

Ks

PN

Nc

)
−

Ps

Ks

Ps

Ks
+ PN

Nc

]
.

(47)
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Let v1 =
Ps
Ks

PJ
KJ

+
PN
Nc

, then v1
1+v1

=
Ps
Ks

Ps
Ks

+
PJ
KJ

+
PN
Nc

. Similarly, let

v2 =
Ps
Ks
PN
Nc

, then v2
1+v2

=
Ps
Ks

Ps
Ks

+
PN
Nc

. Applying Lemma 4 to (47),

we have

∂C̃

∂Ks
> 0, for any Ks = 1, 2, ..., Nc. (48)

(2) The first-order derivative of C̃ over KJ ,

∂C̃

∂KJ
=
Ks

Nc

B

Nc

1

ln 2

[
ln

(
1 +

Ps

Ks

PJ

KJ
+ PN

Nc

)
− ln

(
1 +

Ps

Ks

PN

Nc

)

+
Ps

Ks

PJ

KJ(
Ps

Ks
+ PJ

KJ
+ PN

Nc

)(
PJ

KJ
+ PN

Nc

)


<
Ks

Nc

B

Nc

1

ln 2

 Ps

Ks

PJ

KJ

PN

Nc

(
Ps

Ks
+ PJ

KJ
+ PN

Nc

)
+ Ps

Ks

PJ

KJ

− ln

1 +
Ps

Ks

PJ

KJ

PN

Nc

(
Ps

Ks
+ PJ

KJ
+ PN

Nc

)
 .

(49)

Let v0 =
Ps
Ks

PJ
KJ

PN
Nc

(
Ps
Ks

+
PJ
KJ

+
PN
Nc

) , then v0
1+v0

=

Ps
Ks

PJ
KJ

PN
Nc

(
Ps
Ks

+
PJ
KJ

+
PN
Nc

)
+ Ps

Ks

PJ
KJ

. Applying Lemma 4 to (49),

we have

∂C̃

∂KJ
< 0, for any KJ = 1, 2, ..., Nc. (50)

APPENDIX D
CONVERGENCE ANALYSIS OF THE ITERATIVE WATER

POURING ALGORITHM

We prove the convergence of the iterative water pouring
algorithm (please refer to Table I) by using the fact that an
upper bounded and monotonically increasing sequence must
converge. More specifically, we show that the constant c2
in the algorithm is both upper bounded and monotonically
increasing.

Since the total power of both the authorized user and the
jammer is limited and the noise power levels are fixed, the
water level, c2, must be upper bounded. Next, we will show
c2 increases for each iteration. Recall that in the iterative
water pouring algorithm, c2 is initialized with the solution
obtained using the two-step water pouring algorithm, and then
we iteratively execute the following two steps:
|HJ,i|2

|Hs,i|2
P ∗J,i =

[
min(

|HJ,i|2

|Hs,i|2
c1, c2)− σ2

n,i

]+
, ∀i,

P ∗s,i =

(
c2 −

|HJ,i|2

|Hs,i|2
P ∗J,i − σ2

n,i

)+

, ∀i.

(51a)

(51b)

In the first iteration, we resolve violations against (33) by
(51a). That is, for any subchannel with unnecessarily high
jamming power (i.e., |HJ,i|2

|Hs,i|2P
∗
J,i + σ2

n,i =
|HJ,i|2
|Hs,i|2 c1 > c2),

the unnecessary part |HJ,i|2
|Hs,i|2 c1− c2 will be moved to the less-

filled subchannels (i.e., |HJ,i|2
|Hs,i|2P

∗
J,i + σ2

n,i =
|HJ,i|2
|Hs,i|2 c1 < c2).

In this case, the total jamming power below the water level
c2 goes higher, which will inevitably raise the water level c2
once (51b) is executed.

Starting from the second iteration, since c2 has been in-
creased by the previous iteration, when reallocating the jam-
ming power by (51a), “jamming-efficient” subchannels will
be “relaxed” (due to higher c2) in the sense of being able
to use more jamming power. A subchannel is said to be
more jamming-efficient, if it has a lower jamming power path
loss but higher user signal path loss, i.e., the ratio |HJ,i|2

|Hs,i|2 is
larger. For this reason, even the total original jamming power
remains constant, the total “effective” jamming power below
the water level c2, which takes pass loss into account, would go
higher again, due to increased contribution of highly jamming-
efficient subchannels. This will again raise the water level
c2 once (51b) is executed. Now we are safe to say that the
constant c2 increases iteration by iteration.
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