
Physical Layer Security of Multiband

Communications Under Hostile Jamming

Tianlong Song Yuan Liang Tongtong Li

Dept. of Electrical & Computer Engineering, Michigan State University

East Lansing, MI 48824, USA

Email: {songtia6, liangy11, tongli}@msu.edu

Abstract—This paper considers a game between a power-
limited authorized user and a power-limited jammer, who op-
erate independently over the same AWGN channel consisting of
multiple bands. We explore the possibility for the authorized
user or the jammer to randomly utilize part (or all) of the
available spectrum and/or apply nonuniform power allocation.
It is found that: either for the authorized user to maximize
its capacity, or for the jammer to minimize the capacity of
the authorized user, the best strategy for both of them is to
distribute the transmission power or jamming power uniformly
over all the available spectrum. The minimax capacity can be
calculated based on the channel bandwidth and the signal to
jamming and noise ratio, and it matches with the Shannon
channel capacity formula. Numerical results are provided to
illustrate the theoretical analysis.

Index Terms—Multiband communications, game theory, jam-
ming, capacity analysis.

I. INTRODUCTION

Hostile jamming, in which the authorized user’s signal is

deliberately interfered by the adversary, is one of the most

commonly used techniques for limiting the effectiveness of

an opponent’s communication. In traditional anti-jamming

techniques [1], they either assume specific jamming models

or try to estimate the jamming pattern before selecting an

anti-jamming scheme. The underlying assumption is that the

jamming is varying slowly such that the authorized user

has sufficient time to track and react to the jamming. How-

ever, if the jammer is intelligent and can switch its patterns

fast enough, then it would be impossible for the authorized

user to detect and react in real time. To the best of our

knowledge, existing work on this topic has been focused

on single band communications [2] or just power allocation

for multiband/multicarrier communications [3]. An interesting

question is: can the authorized user or the jammer benefit from

randomly utilizing part instead of all of the available spectrum

and/or applying nonuniform power allocation in the presence

of an intractable opponent?

In this paper, we try to address this question by investigating

a game between a power-limited authorized user and a power-

limited jammer, who operate independently over the same

AWGN channel consisting of multiple bands. From a game

theoretical perspective, we find that: either for the authorized

user to maximize its capacity, or for the jammer to mini-

mize the capacity of the authorized user, the best strategy

for both of them is to distribute the transmission power or

jamming power uniformly over all the available spectrum.

The minimax capacity of the authorized user is given by

C = B log2(1+Ps/(PJ +PN )), where B is the bandwidth of

the overall spectrum, PN the noise power, Ps and PJ the total

power for the authorized user and the jammer, respectively.

In other words, the minimax capacity above is the smallest

capacity that can be achieved by the authorized user if it

utilizes all the available spectrum and applies uniform power

allocation, no matter what strategy is applied by the jammer;

meanwhile, it is also the largest capacity that can be achieved

by the authorized user if the jammer jams all the available

spectrum and applies uniform power allocation, no matter what

strategy is applied by the authorized user.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multiband communication scenario, where

an authorized user and a jammer operate over Nc frequency

bands or subchannels (not necessarily being consecutive), and

each has a bandwidth of B/Nc Hz. That is, the bandwidth

of the total available spectrum is B Hz. Each subchannel is

modeled as an AWGN channel. More specifically, we assume

the total noise power over the entire spectrum is PN , and

the noise power corresponding to each subchannel is PN/Nc.

Recall that Gaussian jamming is optimal when the jammer has

no knowledge of its target [4], hence we assume the jamming

is Gaussian for each jammed subchannel. In the following, Ps

denotes the total available power for the authorized user, and

PJ the total jamming power.

The authorized user is always trying to maximize its capac-

ity under jamming by applying an optimal strategy, that is, to

transmit information over all or part of the available subchan-

nels with optimal subchannel selection and power allocation.

Accordingly, the jammer would like to find an optimal strategy

that can minimize the capacity of the authorized user. It is

assumed that both the authorized user and the jammer have

no knowledge of the selected subchannels and power levels

applied by their opponent.

Each strategy applied by the authorized user is determined

by the number of activated subchannels, the subchannel selec-

tion process and the power allocation process. More specifi-

cally: (1) The authorized user activates Ks (1 ≤ Ks ≤ Nc)

out of Nc subchannels each time for information transmission.

(2) The subchannel selection process is characterized using

a binary indicator vector α = [α1, α2, ..., αNc
], where the
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random variable αm = 1 or 0 indicates whether the mth

subchannel is selected or not, and
∑Nc

m=1 αm = Ks. Let

ωs = [ωs,1, ωs,2, ..., ωs,Nc
] be the corresponding probability

vector, where ωs,m denotes the probability that the mth

subchannel is selected each time (i.e., ωs,m = Pr{αm = 1}),

and
∑Nc

m=1 ωs,m = Ks. (3) The authorized user numbers the

selected Ks subchannels from 1 through Ks following the

order as they appear in the original spectrum, and performs

power allocation over them. The power allocation process

is characterized using a vector Ps = [Ps,1, Ps,2, ..., Ps,Ks
],

in which Ps,n denotes the power allocated to the nth se-

lected subchannel, and
∑Ks

n=1 Ps,n = Ps is the power con-

straint. Let Ws,Ks
= {ωs = [ωs,1, ωs,2, ..., ωs,Nc

]|0 ≤

ωs,m ≤ 1,
∑Nc

m=1 ωs,m = Ks}, and Ps,Ks
= {Ps =

[Ps,1, Ps,2, ..., Ps,Ks
]|0 < Ps,n ≤ Ps,

∑Ks

n=1 Ps,n = Ps}. The

strategy space for the authorized user can thus be defined as

X = {(Ks,ωs,Ps)|1 ≤ Ks ≤ Nc,ωs ∈ Ws,Ks
,Ps ∈ Ps,Ks

}.
(1)

The strategy space X covers all the possible subchannel

utilization strategies as Ks varies from 1 to Nc.

Similarly, the jammer jams KJ (1 ≤ KJ ≤ Nc) out

of Nc subchannels each time following a binary indicator

vector β = [β1, β2, ..., βNc
] with

∑Nc

m=1 βm = KJ . The

subchannel selection process is characterized using a prob-

ability vector ωJ = [ωJ,1, ωJ,2, ..., ωJ,Nc
], where ωJ,m =

Pr{βm = 1} and
∑Nc

m=1 ωJ,m = KJ . Then the jammer

numbers the KJ selected subchannels from 1 through KJ in

the same manner as the authorized user, and performs power

allocation over them using a power-allocation vector PJ =
[PJ,1, PJ,2, ..., PJ,KJ

] with
∑KJ

n=1 PJ,n = PJ . Let WJ,KJ
=

{ωJ = [ωJ,1, ωJ,2, ..., ωJ,Nc
]|0 ≤ ωJ,m ≤ 1,

∑Nc

m=1 ωJ,m =
KJ} and PJ,KJ

= {PJ = [PJ,1, PJ,2, ..., PJ,KJ
]|0 < PJ,n ≤

PJ ,
∑KJ

n=1 PJ,n = PJ}, the strategy space for the jammer can

thus be defined as

Y = {(KJ ,ωJ ,PJ)|1 ≤ KJ ≤ Nc,ωJ ∈ WJ,KJ
,PJ ∈ PJ,KJ

}.
(2)

From a game theoretical perspective, the strategic decision-

making of the authorized user and the jammer can be modeled

as a two-person zero-sum game [5], which is characterized by

a triplet (X ,Y, C), where

1) X is the strategy space of the authorized user;

2) Y is the strategy space of the jammer;

3) C is a real-valued payoff function defined on X × Y .

The interpretation is as follows. Let (x, y) denote the strat-

egy pair, in which x ∈ X and y ∈ Y are the strategies

applied by the authorized user and the jammer, respectively.

The payoff function C(x, y) is defined as the expected or

average capacity of the authorized user choosing a strategy

x ∈ X in the presence of the jammer choosing a strategy

y ∈ Y . In other words, C(x, y) is the amount that the

authorized user wins and simultaneously the jammer loses

in the game with a strategy pair (x, y). Define A = {α =
[α1, α2, ..., αNc

]|αm ∈ {0, 1},
∑Nc

m=1 αm = Ks}, and B =

{β = [β1, β2, ..., βNc
]|βm ∈ {0, 1},

∑Nc

m=1 βm = KJ}. Let

p(α) and p(β) denote the probabilities that the authorized

user selects subchannels using α and the jammer selects

subchannels using β, respectively. Let Ts,m and TJ,m be the

power allocated to the mth subchannel by the authorized user

and the jammer, respectively, which are determined by

Ts,m =

{
Ps,gm , αm = 1,
0, αm = 0,

TJ,m =

{
PJ,qm , βm = 1,
0, βm = 0,

(3)

where gm =
∑m

i=1 αi is the new index of subchannel m in

the Ks selected subchannels if it is activated by the authorized

user, and qm =
∑m

i=1 βi is the new index of subchannel m in

the KJ selected subchannels if it is jammed by the jammer.

Apparently, we have 1 ≤ gm ≤ Ks and 1 ≤ qm ≤ KJ , for

all 1 ≤ m ≤ Nc. Note that the subchannel selection processes

used by the authorized user and the jammer are independent

of each other. Then, the average capacity of the authorized

user in the game with a strategy pair (x, y) can be calculated

as

C(x, y) =
∑

α∈A

∑

β∈B

p(α)p(β)

×

Nc∑

m=1

B

Nc
log2

(
1 +

Ts,m

TJ,m + PN/Nc

)
.

(4)

Based on the definitions above, the minimax capacity of the

authorized user can be obtained by [6]

C(x∗, y∗) = max
x∈X

min
y∈Y

C(x, y) = min
y∈Y

max
x∈X

C(x, y). (5)

It can be seen from (5) that the authorized user tries to choose

an optimal strategy x∗ ∈ X to maximize its capacity, while the

jammer tries to minimize it by choosing an optimal strategy

y∗ ∈ Y . The capacity C(x∗, y∗) in (5) can be achieved

when a saddle point strategy pair (x∗, y∗) is chosen, which

is characterized by the following inequalities [7]

C(x, y∗) ≤ C(x∗, y∗) ≤ C(x∗, y), ∀x ∈ X , y ∈ Y. (6)

This implies that: with strategy x∗, the smallest capacity that

can be achieved by the authorized user is C(x∗, y∗), no matter

which strategy is applied by the jammer; on the other hand, if

the jammer applies strategy y∗, the largest capacity that can be

achieved by the authorized user is also C(x∗, y∗), no matter

which strategy is applied by the authorized user. As a result, to

find the optimal transmission strategy and jamming strategy,

we need to find the saddle point strategy pair (x∗, y∗).

III. OPTIMAL STRATEGY FOR MULTIBAND

COMMUNICATIONS UNDER JAMMING

Recall that Ks denotes the number of subchannels activated

by the authorized user, and KJ the number of subchannels

jammed by the jammer. In this section, we derive the saddle

point strategy pair (x∗, y∗) in two steps: (1) For any fixed Ks

and KJ with 1 ≤ Ks,KJ ≤ Nc, calculate the corresponding

minimax capacity and denote it by C̃(Ks,KJ). Let Ks =
1, 2, ..., Nc and KJ = 1, 2, ..., Nc, we can obtain an Nc ×Nc

payoff matrix C̃. (2) For the derived payoff matrix C̃, locate its

saddle point, and then the minimax capacity of the authorized

user in (5) can be calculated accordingly.
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A. The Minimax Problem for Fixed Ks and KJ

With fixed Ks and KJ , the strategy space for the au-

thorized user becomes X̃ = {(Ks,ωs,Ps)|Fixed Ks,ωs ∈
Ws,Ks

,Ps ∈ Ps,Ks
} ⊂ X , and similarly the strategy space

for the jammer becomes Ỹ = {(KJ ,ωJ ,PJ)|Fixed KJ ,ωJ ∈
WJ,KJ

,PJ ∈ PJ,KJ
} ⊂ Y . It should be noted that the user-

activated subchannels and the jammed subchannels vary from

one time to another, although the total number of the user-

activated or jammed subchannels is fixed. In the following, we

will find the saddle point of C(x, y) for x ∈ X̃ and y ∈ Ỹ .

Lemma 1. For any z ≥ 0 and a > 0, the real-valued function,

f(z) = log2(1 + z/a), is concave.

Proof: f ′′(z) = −1/ ln 2/(z + a)2 < 0, for any z ≥ 0
and a > 0.

Lemma 2. For any z ≥ 0, a > 0 and b > 0, the real-valued

function, f(z) = log2(1 + a/(z + b)), is convex.

Proof: f ′′(z) = a
ln 2

(2z+a+2b)
(z+a)2(z+a+b)2 > 0, for any z ≥ 0,

a > 0 and b > 0.

The solution to the minimax problem for fixed Ks and KJ

is given in the proposition below.

Proposition 1. Let Ks be the number of subchannels activated

by the authorized user, and KJ the number of subchannels

jammed by the jammer. For any fixed (Ks,KJ) pair, the saddle

point of C(x, y) under the power constraints Ps and PJ for

x ∈ X̃ and y ∈ Ỹ is reached when both authorized user and

the jammer choose to apply uniform subchannel selection and

uniform power allocation strategy. That is, for fixed Ks and

KJ , the saddle point strategy pair (x̃∗, ỹ∗) that satisfies

C(x̃, ỹ∗) ≤ C(x̃∗, ỹ∗) ≤ C(x̃∗, ỹ), ∀x̃ ∈ X̃ , ỹ ∈ Ỹ, (7)

is given by x̃∗ = (Ks,ω
∗
s,P∗

s) with
{

ω∗
s,m = Ks/Nc, m = 1, 2, ..., Nc,

P ∗
s,n = Ps/Ks, n = 1, 2, ...,Ks,

(8)

and ỹ∗ = (KJ ,ω
∗
J ,P∗

J) with
{

ω∗
J,m = KJ/Nc, m = 1, 2, ..., Nc,

P ∗
J,n = PJ/KJ , n = 1, 2, ...,KJ .

(9)

In this case, the minimax capacity of the authorized user can

be obtained as

C̃(Ks,KJ) =Ks
KJ

Nc

B

Nc
log2

(
1 +

Ps/Ks

PJ/KJ + PN/Nc

)

+Ks

(
1−

KJ

Nc

)
B

Nc
log2

(
1 +

Ps/Ks

PN/Nc

)
.

(10)

Proof: (1) We first prove that (x̃∗, ỹ∗) defined in (8)

and (9) satisfy the left part of (7), C(x̃, ỹ∗) ≤ C(x̃∗, ỹ∗).
Assuming the jammer applies the strategy ỹ∗ with uniform

subchannel selection and uniform power allocation as indi-

cated in (9). For the authorized user who applies an arbitrary

strategy x̃ ∈ X̃ , we numbered the activated Ks subchannels

as n = 1, 2, ...,Ks. For each subchannel activated by the

authorized user, the probability that it is jammed is KJ/Nc,

since the jammer jams each subchannel with a uniform prob-

ability ω∗
J,m = KJ/Nc. Accordingly, the probability that each

subchannel is not jammed is 1−KJ/Nc.

Considering all the subchannels activated by the authorized

user, when the authorized user applies an arbitrary strategy x̃ ∈
X̃ , and the jammer applies strategy ỹ∗, the average capacity

can be calculated as

C(x̃, ỹ∗) =

Ks∑

n=1

[
KJ

Nc

B

Nc
log2

(
1 +

Ps,n

PJ/KJ + PN/Nc

)

+

(
1−

KJ

Nc

)
B

Nc
log2

(
1 +

Ps,n

PN/Nc

)]

=
KJ

Nc

B

Nc

Ks∑

n=1

log2

(
1 +

Ps,n

PJ/KJ + PN/Nc

)

+

(
1−

KJ

Nc

)
B

Nc

Ks∑

n=1

log2

(
1 +

Ps,n

PN/Nc

)
.

(11)

Note that
∑Ks

n=1 Ps,n = Ps, and applying Lemma 1, we have

C(x̃, ỹ∗) ≤Ks
KJ

Nc

B

Nc
log2

(
1 +

Ps/Ks

PJ/KJ + PN/Nc

)

+Ks

(
1−

KJ

Nc

)
B

Nc
log2

(
1 +

Ps/Ks

PN/Nc

)

=C(x̃∗, ỹ∗),

(12)

where the equality holds if and only if Ps,n = Ps/Ks, ∀n.

(2) Proof of the right part of (7), C(x̃∗, ỹ∗) ≤ C(x̃∗, ỹ).
Assuming the authorized user applies the strategy x̃∗ with

uniform subchannel selection and uniform power allocation

as indicated in (8). For the jammer who applies an arbitrary

strategy ỹ ∈ Ỹ , we numbered the jammed KJ subchannels as

n = 1, 2, ...,KJ . For each jammed subchannel, the probability

that it also serves as a subchannel activated by the authorized

user is ω∗
s,m = Ks/Nc. Hence, the average number of jammed

subchannels which are also activated by the authorized user

is KJKs/Nc, and the average number of subchannels acti-

vated by the authorized user that are jamming-free would be

Ks −KJKs/Nc = Ks(1−KJ/Nc).

Considering both the jammed and jamming-free subchan-

nels, when the jammer applies an arbitrary strategy ỹ ∈ Ỹ , and

the authorized user applies strategy x̃∗, the average capacity

can be calculated as

C(x̃∗, ỹ) =

KJ∑

n=1

Ks

Nc

B

Nc
log2

(
1 +

Ps/Ks

PJ,n + PN/Nc

)

+Ks

(
1−

KJ

Nc

)
B

Nc
log2

(
1 +

Ps/Ks

PN/Nc

)
.

(13)
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Note that
∑KJ

n=1 PJ,n = PJ , and applying Lemma 2, we have

C(x̃∗, ỹ) ≥Ks
KJ

Nc

B

Nc
log2

(
1 +

Ps/Ks

PJ/KJ + PN/Nc

)

+Ks

(
1−

KJ

Nc

)
B

Nc
log2

(
1 +

Ps/Ks

PN/Nc

)

=C(x̃∗, ỹ∗),

(14)

where the equality holds if and only if PJ,n = PJ/KJ , ∀n.

Proposition 1 shows that: when the number of user-activated

subchannels and the number of jammed subchannels are

both fixed, uniform subchannel selection and uniform power

allocation would serve as the best strategies, not only for

the authorized user to maximize its capacity but also for the

jammer to minimize the capacity of the authorized user.

B. Capacity Optimization over Ks and KJ

In Section III-A, we derived the closed-form minimax ca-

pacity of the authorized user for fixed Ks and KJ . Considering

all possible Ks and KJ , we would have an Nc×Nc matrix C̃,

in which C̃(Ks,KJ) is the minimax capacity of the authorized

user for fixed Ks and KJ , as indicated in (10). Now finding the

minimax capacity in (5) can be reduced to finding the saddle

point of the matrix C̃. Note that the saddle point of a matrix

A is an entry ai,j , which is simultaneously the minimum of

the ith row and the maximum of the jth column.

Lemma 3. For a real-valued function f(z) = ln(1 + z) −
z/(1 + z), f(z) > 0, when z > 0.

Proof: When z > 0, f ′(z) = z/(1 + z)2 > 0. Thus,

f(z) > f(0) = 0.

Lemma 4. For the capacity function

C̃(Ks,KJ) =Ks
KJ

Nc

B

Nc
log2

(
1 +

Ps/Ks

PJ/KJ + PN/Nc

)

+Ks

(
1−

KJ

Nc

)
B

Nc
log2

(
1 +

Ps/Ks

PN/Nc

)
,

(15)

we have

∂C̃

∂Ks
> 0 &

∂C̃

∂KJ
< 0. (16)

Proof: (1) The first-order derivative of C̃ over Ks,

∂C̃

∂Ks

=
KJ

Nc

B

Nc

1

ln 2

[
ln

(
1 +

Ps

Ks

PJ

KJ
+ PN

Nc

)
−

Ps

Ks

Ps

Ks
+ PJ

KJ
+ PN

Nc

]

+

(
1−

KJ

Nc

)
B

Nc

1

ln 2

[
ln

(
1 +

Ps

Ks

PN

Nc

)
−

Ps

Ks

Ps

Ks
+ PN

Nc

]
.

(17)

Let z1 = Ps/Ks

PJ/KJ+PN/Nc

, then z1
1+z1

=
Ps/Ks

Ps/Ks+PJ/KJ+PN/Nc

. Similarly, let z2 = Ps/Ks

PN/Nc

, then
z2

1+z2
= Ps/Ks

Ps/Ks+PN/Nc

. Applying Lemma 3 to (17), we have

∂C̃

∂Ks
> 0. (18)

(2) The first-order derivative of C̃ over KJ ,

∂C̃

∂KJ

=
Ks

Nc

B

Nc

1

ln 2

[
ln

(
1 +

Ps

Ks

PJ

KJ
+ PN

Nc

)
− ln

(
1 +

Ps

Ks

PN

Nc

)

+

Ps

Ks

PJ

KJ(
Ps

Ks
+ PJ

KJ
+ PN

Nc

)(
PJ

KJ
+ PN

Nc

)




<
Ks

Nc

B

Nc

1

ln 2




Ps

Ks

PJ

KJ

PN

Nc

(
Ps

Ks
+ PJ

KJ
+ PN

Nc

)
+ Ps

Ks

PJ

KJ

− ln


1 +

Ps

Ks

PJ

KJ

PN

Nc

(
Ps

Ks
+ PJ

KJ
+ PN

Nc

)




 .

(19)

Let z0 = Ps/KsPJ/KJ

PN/Nc(Ps/Ks+PJ/KJ+PN/Nc)
, then z0

1+z0
=

Ps/KsPJ/KJ

PN/Nc(Ps/Ks+PJ/KJ+PN/Nc)+Ps/KsPJ/KJ

. Applying Lemma

3 to (19), we have

∂C̃

∂KJ
< 0. (20)

Following Lemma 4, we have the proposition below.

Proposition 2. The saddle point of matrix C̃ is indexed by

(K∗
s ,K

∗
J) = (Nc, Nc). Equivalently, for all 1 ≤ Ks,KJ ≤

Nc, we have

C̃(Ks, Nc) ≤ C̃(Nc, Nc) ≤ C̃(Nc,KJ). (21)

C. The Minimax Capacity

In Section III-A, we derived the saddle point strategies and

the corresponding minimax capacity for fixed Ks and KJ ; in

Section III-B, the gaming relationship over different Ks and

KJ was investigated, and we found the saddle point strategies

indicating how to choose Ks and KJ for the authorized

user and the jammer, respectively. Consequently, exploring all

possible strategies in the defined strategy spaces X and Y ,

we manage to find the saddle point strategies to the original

minimax problem in (5). The result is summarized in the

theorem below.

Theorem 1. Assuming that an authorized user and a jammer

are operating independently over the same AWGN channel

consisting of Nc subchannels. Either for the authorized user

to maximize its capacity, or for the jammer to minimize the

capacity of the authorized user, the best strategy for both of

them is to distribute the power uniformly over all the Nc

subchannels. In this case, the minimax capacity is given by

C = B log2

(
1 +

Ps

PJ + PN

)
, (22)

where B is the bandwidth of the overall spectrum, PN the

noise power, Ps and PJ the total power for the authorized

user and the jammer, respectively.

Proof: The proof follows directly from Proposition 1 and

2. The minimax capacity in (22) can be derived simply by

substituting Ks = KJ = Nc into (10).
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IV. NUMERICAL RESULTS

In this section, we evaluate the impact of different strategies

applied by the authorized user and the jammer on the capacity

of the authorized user. We assume Nc = 64, B = 1 MHz,

Ps = PJ = 16 W, and the overall SNR is 10dB. In light of

Proposition 1, we assume that both the authorized user and

the jammer apply uniform subchannel selection.

A. Capacity v.s. Power Allocation with Fixed Ks and KJ

We evaluate the capacity of the authorized user under

different transmission and jamming power allocation schemes.

Performing power allocation, we set the power allocation

vector as one whose elements, if sorted, would form an

arithmetic sequence, and we use the maximum power dif-

ference among all the selected subchannels as the metric of

uniformity. Hence, the maximum power difference indicates

how far the power allocation is away from being uniform,

and a zero difference means uniform power allocation. Here

we evaluate the capacity in two cases: (1) uniform jamming

power allocation, while the power allocation for the authorized

user is nonuniform; (2) the case which is opposite to (1).
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Fig. 1. Capacity v.s. different power allocation.

Fig. 1 shows the results when both the authorized user and

the jammer select half of all the available subchannels. It can

be seen that: (1) if the jammer applies uniform power alloca-

tion, the authorized user maximizes its capacity when it applies

uniform power allocation as well; (2) if the authorized user

applies uniform power allocation, the jammer minimizes the

capacity of the authorized user when it applies uniform power

allocation as well; (3) the minimax capacity (the intersection

in the figure) serves as a lower bound when the authorized user

applies uniform power allocation under all possible jamming

power allocation schemes, and meanwhile an upper bound

when the jammer applies uniform power allocation under all

possible transmission power allocation schemes. The results

above match well with Proposition 1.

B. Capacity v.s. Number of Selected Subchannels

We evaluate the capacity of the authorized user with dif-

ferent number of selected subchannels by the authorized user

or the jammer. For each (Ks,KJ) pair, both the authorized

user and the jammer apply uniform power allocation. It is

observed in Fig. 2 that the best strategy is to utilize all the

Nc subchannels, either for the authorized user to maximize its

capacity, or for the jammer to minimize the capacity of the

authorized user. This result matches well with Proposition 2.
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Fig. 2. Capacity v.s. number of selected subchannels.

V. CONCLUSIONS

In this paper, we investigated a game between a power-

limited authorized user and a power-limited jammer, who oper-

ate independently over the same AWGN channel consisting of

multiple bands. Both theoretical analysis and numerical results

demonstrated that: either for the authorized user to maximize

its capacity, or for the jammer to minimize the capacity of

the authorized user, the best strategy for both of them is to

distribute the transmission power or jamming power uniformly

over all the available spectrum.
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