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ABSTRACT
This paper provides a theoretical analysis on the classifi-

cation accuracy of LDA-Bayesian based method with respect
to the data sample size in brain connectivity analysis. More
specifically, we show that when the sample size increases,
both the classification error probability and its upper bound
decreases monotonically. However, we also show that due
to the model limitation of the Bayesian classifier, the classi-
fication error probability is actually lower bounded as well,
which implies that the error probability actually converges
to a non-zero constant even if the data sample size tends to
infinity. Our analysis is demonstrated through fMRI based
numerical results.

Index Terms—fMRI, Alzheimer’s Disease Bayesian, Error
Probability

I. INTRODUCTION

Accurate distinction of Alzheimer’s Disease (AD) and
normal control (NC) subjects is critical for early diagnosis
and treatment of brain disorders. Recently, functional mag-
netic resonance imaging (fMRI) data, which maps brain ac-
tivities to metabolic changes in cerebral blood flow, has been
used to classify AD and NC subjects [1], [2]. In [1], Wang et
al. extracted two intrinsically anti-correlated networks using
resting state fMRI data from 14 AD patients and 14 NC
subjects, and applied a Pseudo-Fisher Linear Discriminative
Analysis (pFLDA) on the high dimensional feature vectors.
Their two-category classification accuracy was 83%. In [2],
Chen et al. applied the same technique to larger datasets.
Similarly, the accuracy of the two-category classification of
AD patients and NC subjects was 82%.

Compared with other methods like EEG, fMRI data can
display active brain areas more directly, and has much better
spatial resolution throughout the brain. Unlike structural
MRI which mainly reflects the anatomical information of
brain tissues and structure, fMRI focuses on functional brain
activities, and can provide more direct measurement on
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how different brain regions are involved in particular brain
activities.

While structural MRI has been widely applied to clinical
diagnosis of brain disorders, fMRI has mainly been used
for research purposes. As a result, the size of fMRI data
samples is generally quite limited, which has become a major
bottleneck in fMRI based AD and NC classification. The
underlying reason is that, when the sample size is small,
most existing classifiers could potentially suffer from noise
effects, due to both biological variability and measurement
noise.

Motivated by this observation, in this paper, we provide
a theoretical analysis on the influences of size limited fMRI
data samples on the classification accuracy, based on the
naive Bayesian classifier. More specifically, we show that as
the number of data samples increases, the bound of error
probability will decrease exponentially.

The major contributions of this paper can be summarized
as:

• We construct the feature vectors out of real fMRI
dataset using Linear Discriminant Analysis (LDA) [3],
and carry out classification of AD patients and NC
subjects based on the naive Bayesian classifier.

• We provide a theoretical analysis on how classification
accuracy is influenced by sample size. It is shown
that: due to the noise effect including both biological
variability and measurement noise, when the naive
Bayesian classifier is used, the upper bound of the error
probability decreases exponentially as the sample size
increases. This provides an estimation on the expected
classification error probability for a given data sample
size.

The rest of this paper is organized as follows. The
framework of brain network connectivity pattern analysis is
discussed in Section II. The Linear Discriminant Analysis,
which is a prerequisite step for classifications, is briefed in
Section III. In Section IV, we present the naive Bayesian
approach and the proposed theoretical analysis on error
probabilities of the Bayesian classifier. In Section V, we
present the numerical results based on real fMRI data, and
we conclude in Section VI.
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II. CLASSIFICATION BASED ON BRAIN
CONNECTIVITY PATTERN

In this section, we present the problem of classification
based on brain network connectivity analysis.

In fMRI based studies, it is a common practice to study
multiple regions of interest (ROIs) instead of only one
region. Regions within the ROI formulate a sub-network,
and the network connectivity pattern analysis is then carried
out by evaluating the correlation between all ROI pairs
within the sub-network. The underlying argument is that:
due to variability in the brain connectivity of each individual,
the connectivity between two brain regions alone may not
be sufficient to distinguish NC subjects from patients with
cognitive impairments; brain network connectivity pattern
analysis, which looks for subtle changes in the pattern
of connectivity among multiple or all regions in the sub-
network, may reveal more in-depth information.

The default mode network (DMN) is one of the well
studied networks at the resting state [4]. Prior resting-state
fMRI studies have demonstrated that the DMN is affected
by AD [5]–[9]. Both hippocampus and ICC are part of
the DMN, and can be well defined anatomically through
the FreeSurfer software [9], even in brains with abnormal
anatomy [8]. The paper by Zhu et al. [8] specifically demon-
strated that the functional connection between hippocampus
and ICC was decreased in AD.

Motivated by the observations above, in this paper, we
select the right and left hippocampi and ICCs (4 regions) as
our ROI sub-network. Our connectivity pattern analysis is
carried out following the procedure below.

First, we calculate the Pearson correlation coefficients
between all possible pairs of the ROIs within the group to
formulate the feature vectors. As we now have 4 regions in
the ROI sub-network, for each subject i, we can obtain a
d−dimensional (d = 6) vector vi, consisting of the Pearson
correlation coefficients for each pair of ROIs. When we have
n1 AD patients and n2 normal control subjects, we get the
feature vector set V = {v1, · · · ,vn1

,vn1+1, · · · ,vn1+n2
}.

Second, using the LDA, we map V to a one-dimensional
subspace or axis, where the differences between AD and NC
subjects are maximized, and denote the projected vectors as
{x} = {x1, · · · , xn1

, · · · , xn1+1, · · · , xn1+n2
}.

Finally, we carry out the classification using the naive
Bayesian classifier based on the obtained {x}.

III. LINEAR DISCRIMINANT ANALYSIS

Linear Discriminant Analysis aims to separate two classes
by projecting them into a subspace or direction where
different classes show most significant differences [10]. Note
that we have obtained a set of d−dimensional vector samples
V = {v1, · · · ,vn1 ,vn1+1, · · · ,vn1+n2}, where n1 of them
are from the first class, denoted as C1, and n2 of them are
from the second class, denoted as C2. For k = 1, 2, the

mean and scatter matrix (i.e., the scaled covariance matrix)
of each of the two classes are defined as:

µk =
1

nk

∑
v∈Ck

v, (1)

Sk =
∑
v∈Ck

(v − µk)(v − µk)t. (2)

Consider the projection of vectors in V to a new
d−dimensional space:

x = Wv, v ∈ V, (3)

where W is a d × d matrix to be determined by the LDA
algorithm. In this paper, we only utilize the first dimension
x, of projected vector x, where the differences among two
classes are maximized. As a result, Equation (3) can be
rewritten as:

x = wtv, (4)

Define µ = 1
n1+n2

n1+n2∑
i=1

vi as the overall mean, SW =

2∑
k=1

Sk as the within-class scatter matrix, and the between-

class scatter matrix SB as:

SB =

2∑
k=1

nk(µk − µ)(µk − µ)t. (5)

LDA seeks a transform vector w that maximizes the follow-
ing objective function:

J(w) =
wtSBw

wtSWw
. (6)

It can be proved [3], [10] that to maximize Equation (6), w
should satisfy

S−1W SBw = λw, (7)

for some constant λ. Performing eigenvalue decomposition
to matrix S−1W SB , LDA then chooses the eigenvector corre-
sponding to the largest eigenvalues of the matrix S−1W SB as
w. As will be shown in Section III, various classifiers, such
as the Bayesian classifier can then be applied to the projected
vectors {xi = wtvi}n1+n2

i=1 for further classification.

IV. INFLUENCE OF SAMPLE SIZE ON THE
ACCURACY OF BAYESIAN CLASSIFICATION

In this section, we theoretically analyze the influence of
sample size on the classification error probability. Suppose
we have a set of normally distributed data samples {x},
where n1 of them are from the first class, denoted as C1,
and n2 of them are from the second class, denoted as C2. For
i = 1, 2, the mean of each class is denoted as µi. Without
loss of generality, assume µ1 < µ2, and two classes of data
samples have the same sample size and variance, i.e., n1 =
n2 = n and σ2

1 = σ2
2 = σ2

0 .

1157



Consider the basic Bayesian classifier, which aims to find
the decision regions by calculating the boundary points b.
More specifically, for any given xi, i = 1, 2, ..., 2n: If xi < b,
then xi ∈ C1; otherwise xi ∈ C2. To calculate b, suppose
y is a random variable, Cy the corresponding class, and C̃y
the class assigned by the classifier. Set

P (C̃y = C1) = P (C̃y = C2). (8)

That is,∫ b

−∞

1√
2πσ0

e
− (y−µ1)2

2σ2
0 dy =

∫ ∞
b

1√
2πσ0

e
− (y−µ2)2

2σ2
0 dy. (9)

Because the Gaussian probability density function is sym-
metric, Equation (9) can be rewritten as:∫ b

−∞

1√
2πσ0

e
− (y−µ1)2

2σ2
0 dy =

∫ 2µ2−b

−∞

1√
2πσ0

e
− (y−µ2)2

2σ2
0 dy. (10)

Let u = (y − µ1)/σ0, and v = (y − µ2)/σ0, Equation (10)
can be further simplified as:∫ b−µ1

σ0

−∞

1√
2πσ0

e−
u2

2 du =

∫ µ2−b
σ0

−∞

1√
2πσ0

e−
v2

2 dv. (11)

Letting (b− µ1)/σ0 = (µ2 − b)/σ0, the final solution can
be derived as b = (µ1 +µ2)/2. That is, the classifier simply
compares the Euclidean distances of a data point to the center
of two classes and assigns it to the nearest neighbor.

The probability of the error that the random variable y is
incorrectly classified by the Bayesian classifier is:

Perr = P (Cy = C1)P (C̃y 6= C1|Cy = C1)

+P (Cy = C2)P (C̃y 6= C2|Cy = C2)

=
1

2

∞∫
b

1√
2πσ0

e
− (y−µ1)2

2σ2
0 dy

+
1

2

b∫
−∞

1√
2πσ0

e
− (y−µ2)2

2σ2
0 dy. (12)

When b = (µ1 + µ2)/2, the error probability Perr can
be minimized. In real applications, however, µ1 and µ2 are
not known, and the means in Equation (12) will be replaced
with the estimated averages µ̂i = 1

n

∑
x∈Ci x, i = 1, 2. In

this case, the calculated boundary b̂ = (µ̂1 + µ̂2)/2. Recall
that the training data set {x} are assumed to be normally
distributed with variance σ2

0 , we can know that for i = 1, 2,
µ̂i is a Gaussian random variable with mean µi and variance
σ2 = σ2

0/n. As a result, an extra error probability Poe will
be introduced into Perr because of inaccurate estimation of

b̂. Without losing generality, assume b̂ > b, we have:

Poe =

∫ b̂

b

1√
2πσ0

[e
− (y−µ2)2

2σ2
0 − e

− (y−µ1)2

2σ2
0 ]dy

=

∫ e

0

1√
2πσ0

[e
− (z−d′)2

2σ2
0 − e

− (z+d′)2

2σ2
0 ]dz

=

∫ e

0

g(z)dz, (13)

where z = y − b, e = b̂ − b, d′ = (µ2 − µ1)/2 and

g(z) = 1√
2πσ0

[e
− (z−d′)2

2σ2
0 − e

− (z+d′)2

2σ2
0 ]. Since µ̂i, i = 1, 2

are normally distributed with variance σ2, e will also be
normally distributed with mean 0 and variance σ2 = σ2

0/n.
Hence the mean of the extra error probability Pe(n) can be
calculated as:

Pe(n) =

∫ ∞
0

Poe
1√
2πσ

e−
e2

2σ2 de

=

∫ ∞
0

∫ e

0

g(z)
1√
2πσ

e−
e2

2σ2 dzde

=

∫ ∞
0

∫ ∞
z

g(z)
1√
2πσ

e−
e2

2σ2 dedz

=

∫ ∞
0

g(z)

∫ ∞
z
σ

1√
2π
e−

e′2
2 de′dz

=

∫ ∞
0

g(z)Q(
z

σ
)dz

=

∫ ∞
0

g(z)Q(

√
nz

σ0
)dz, (14)

where e′ = e/σ, and Q function is the tail probability of the
standard normal distribution. It can be seen from Equation
(14) that, because the Q function is always monotonically
decreasing withe respect to

√
nz
σ0

, for every z, when the
sample size n increases, Q(

√
nz
σ0

) will decrease, and so is
Pe as well.

The final classification error probability P (n) is then the
sum of Perr and Pe(n), i.e.,

P (n) = Perr + Pe(n). (15)

With Equation (15) and (14), we have the following results:
Proposition 1 Given a data sample size n, the correspond-

ing error probability P (n) decreases monotonically with
n, and is bounded by Perr, i.e., P (n) ≥ Perr. That is,
lim
n→∞

P (n) = Pc, where Pc is a constant.

Upper Bound of Error Probability The error probability
Perr in Equation (12) is upper bounded by the Bhattacharyya
Bound [3]:

Perr ≤
1

2
e
− (µ2−µ1)2

8σ2
0 =

1

2
e
− ∆2

8σ2
0 , (16)

in which ∆ = µ2 − µ1 is a constant number.
When the ensemble means in Equation (16) are replaced

with the estimated averages, the constant number ∆ becomes
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a random variable ∆̂:

∆̂ = µ̂2 − µ̂1

= µ2 − µ1 − [(µ̂1 − µ1)− (µ̂2 − µ2)]

= ∆− s, (17)

where s = (µ̂1 − µ1) − (µ̂2 − µ2) is the skew introduced
by the estimated averages. In this case, the corresponding
Bhattacharyya Bound B(s) can be roughly approximated as:

B(s) =
1

2
e
− (∆−s)2

8σ2
0 . (18)

Since for i = 1, 2, µ̂i is a Gaussian random variable with
mean µi and variance σ2 = σ2

0/n, based on the properties of
mean and variance, we can know that s is also a Gaussian
random variable with mean 0 and variance σ2

s = 2σ2 =
2σ2

0/n. As a result, the expectation of the Bhattacharyya
Bound B can be roughly approximated as:

B =

+∞∫
−∞

B(s)
1√

2πσs
e
− s2

2σ2
s ds

=

+∞∫
−∞

1

2
e
− (∆−s)2

8σ2
0

1√
2πσs

e
− s2

2σ2
s ds

=
1

2

√
4σ2

0

4σ2
0 + σ2

s

e
− ∆2

8σ2
0

√
4σ2

0
4σ2

0+σ2
s

=
1

2

√
2n

2n+ 1
e
− ∆2

8σ2
0

√
2n

2n+1 . (19)

It can be seen from Equation (19) that the bound of the
average estimated error probability will decrease monoton-
ically as sample size n increases. That means, to achieve
a satisfying classification accuracy, the sample size should
be as large as possible. This provides an estimation on the
expected classification error probability for a given data
sample size.

V. NUMERICAL ANALYSIS
In this section, we provide numerical results Bayesian

classifications based on brain connectivity pattern analysis,
which confirms the influence of sample size on the classifi-
cation accuracy.

In our data collection process, 10 patients with mild-
to-moderate probable Alzheimer’s Disease and 12 age-
and education-matched healthy NC subjects were recruited
to participate in this study. The fMRI experiment was
conducted on a GE 3T Signa R© HDx MR scanner (GE
Healthcare, Waukesha, WI) with an 8-channel head coil.
To study resting-state brain function, echo-planar images,
starting from the most inferior regions of the brain, were
acquired for 7 minutes with the following parameters: 38
contiguous 3mm axial slices in an interleaved order, time
of echo = 27.7ms, time of repetition = 2500ms, flip angle
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Fig. 1: Classification accuracies and error probabilities with respect to the
sample size.

= 80◦, field of view = 22cm, matrix size = 64 × 64, ramp
sampling, and with the first four data points discarded.
Each volume of slices was acquired 164 times. Common
pre-processing procedures on resting state fMRI data were
carried as detailed in [11].

In the simulations, we vary the sample size of each
subject group from 4 to 10. Since the size of data samples
is small, the performance of the classifier is evaluated by
the Leave-One-Out (LOO) cross-validation. Figure 1 shows
the classification accuracies and error probabilities of the
Bayesian classifier with respect to the sample size. It can
be seen that when the sample size n = 4, the classification
accuracy is as low as 54%, which is slightly higher than that
of random guess. As n increases, the accuracy is increased
as well. When the size n = 10, the accuracy is increased
to be higher than 80%. This provides an estimation on
the expected classification error probability for a given data
sample size.

VI. CONCLUSIONS

In this paper, we analyzed the influence of sample sizes
on the classification accuracies and error probabilities in
the brain connectivity pattern analysis. Both theoretical and
numerical analyses showed that: as the sample size increases,
the errors caused by inaccurate estimation of optimal deci-
sion bound of the Bayesian classifier and the upper error
bound will be reduced.
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