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ABSTRACT
The paper describes a framework in the form of an
optimization of a performance index subject to the constraints
of a dynamic network, represented in the state space. The
performance index is a measure of statistical dependence
among the outputs of the network, namely, the relative entropy
also known as the Kullback-Leibler divergence. The network
is represented as (either discrete or continuous time) state
space dynamics. Update laws are derived in the general cases.
Moreover, in the discrete-time case, they are shown to
specialize to the FIR and IIR network representations.

1. INTRODUCTION

Blind signal processing is a critical area with a wide
applications. Formulation with real-world and general
environments are currently under investigations by numerous
researchers (see [1-6] and the references therein for a sample).

The state space approach formulation of the signal separation,
extraction, and recovery was formulated in [1] for linear time-
invariant systems. The state notion summarizes delays and
filtering of driving signals or source.

Recent works have used the Kullback-Leibler divergence as a
measure for statistical independence [2]. The state space
formulation for linear environments have been introduced in
[1,5] and the references therein. The work here emphasizes
the general formulation, specifically for discrete-time
nonlinear state space systems, and shows how to specialize the
linear time-invariant case to the FIR and IIR filters. The
general continuous-time case is analogous and has been
introduced in [6]. Further details are delegated to [7].

2. ADAPTIVE NETWORKS FOR BLIND
SIGNAL RECOVERY

The “mixing” environment may be represented by an unknown
process with inputs being the independent sources and outputs
being the measurements. In this extreme case, no structure is
assumed about the model of the environment.

The environment may be modeled as a dynamic system with
fixed but unknown parameters. The processing network must

be constructed with the capability to compute the “inverse” (or
the “closest” to an inverse) of the environment model.

It is possible that an augmented network be constructed so that
the inverse of the environment is merely a subsystem of the
network with learning. And hence, even if the inverse of the
environment is unstable (say because of non-minimum phase
zeros), the overall augmented network with the update laws
represent a nonlinear adaptive dynamic system which may
converge to the parameters as a stable equilibrium point. Thus
identification of the process is achieved.

The Performance Measure/Functional

The mutual information of a random vector y is a measure of
dependence among its components and is defined as ([2, 4]):
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The discrete case:
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An approximation of the discrete case:
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where p yy ( )  is the probability density function (pdf) of the

random vector y, whereas p yy jj
( )  is the probabilty

density of the j-th component of the output vector y.  The
functional L (y) is always non-negative and is zero if and only
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if the components of the random vector y are statistically
independent. This important measure defines the degree of
dependence among the components of the signal vector.
Therefore, it represents an appropriate  functional for
characterizing (the degree of) statistical independence.   L(y)
can be expressed in terms of the entropy

∑+−=
i

iyHHL )()()( yy

where H (y) := - E[ln fy],  is the entropy of y, and E[.] denotes
the expected value.

The General Nonlinear Dynamic Case:

The Environment Model:

Let the environment be modeled as the following nonlinear
discrete-time dynamic (forward) processing model:
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where s(k) is an n-dimensional vector of original sources, m(k)
is the m-dimensional vector of measurements, Xp(k) is the

N p -dimensional state vector. The vector (or matrix) w1 *
represents constant/parameter of the dynamic equation, and
w2 *  represents constant/parameter of the “output” equation.

The functions fp(. )  and gp(.) are differentiable. It is also

assumed that existence and uniqueness of solutions of the
differential equation are satisfied for each set of initial
conditions X tp( )0  and a given waveform vector s(k).

The Processing Networks:

The (processing) network may be represented by a dynamic
(forward) network or a dynamic feedback network [4-7].

The Feedforward Network is

X k f X k m k w

y k g X k m k w
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where m(k) is the m-dimensional measurement, y(k) is the r-
dimensional output vector, X k( )  is the N-dimensional state

vector. (Note that N and N p  may be different.) The vector

(or matrix) w1  represents the parameter of the dynamic

equation, and w2  represents the parameter of the “output”

equation. The functions f (. )  and g(.) are differentiable. It

is also assumed that existence and uniqueness of solutions of
the differential equation are satisfied for each set of initial
conditions X t( )0

 and a given measurement waveform vector

m(k).

Update Law for The Feedforward architecture:

The Discrete-time dynamic network: general nonlinear case

The update law is now developed for dynamic environments to
recover the original signals following the procedures in [4-7].

The Feedforward Case:

The network is a feedforward dynamical system.   In this case,
one defines the performance index

J w w L yk
k

k k

k

0 1 2

1

0

1

( , ) ( )=
=

−

∑

subject to the discrete-time nonlinear dynamic network

Then, the augmented cost function to be optimized becomes
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The Hamiltonian is then defined as
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Consequently, the sufficient conditions for optimality are:
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The general Discrete Linear Dynamic Case:

Environment model:

X k A X k B s k

m k C X k D s k
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The first question is the following: Does there exist parameter
matrices of the processing network which would recover the
original signals?  The answer is yes, the explicit solutions of
the parameters are given in [4-7].

Canonical Representations and the State Space Specialization
to Discrete-time IIR and FIR Filters
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The general discrete-time linear dynamics of the network are
given as:

X k A X k B m k

y k C X k D m k
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where m(k) is the m-dimensional vector of measurements, y(k)
is the n-dimensional vector of (processed) outputs, and X(k) is
the (mL) dimensional states (representing filtered versions of
the measurements in this case). One may view the state vector
as composed of he L m-dimensional state vectors
X X XL1 2, , ..., . That is,
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Special Case:

Consider the case where the matrices and A and B are in the
“controllable canonical form.” We represent the A and B block
matrices as,

A

A A A

I

I

I

L

=

L

N

MMMM

O

Q

PPPP

11 12 1

0 0

0

0 0 0

...

...

... ...
,    and     

B

I

=

L

N

MMMM

O

Q

PPPP
0

0

..

where each block sub-matrix A j1
 may be simplified to a

diagonal matrix, and each I is a block identity matrix with
appropriate dimensions.

Then,

X k A X k m k

X k X k

X k X k

y k C X k D m k

j
j

L

j

L L

j
j

L

j

1 1
1

2 1

1

1

1

1

1

( ) ( ) ( )

( ) ( )

...

( ) ( )

( ) ( ) ( )

+ = +

+ =

+ =

= +

=

−

=

∑

∑

This model represents an IIR filtering structure of the
measurement vector m(k). In the event that the block matrices

A j1  are zero, then the model is reduced to the special case of

an FIR filter.
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The equations may be re-written as
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The Update law for the linear dynamic case:

The Discrete-time dynamic network: The linear time-invariant
case
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Special Canonical Representation cases:

The matrices A  and B are best represented in the
“controllable canonical forms” or the form I format. That is, B
is constant and A has only the first block rows as parameters
in the IIR network case. In that event, No update equation for
the matrix B are used. While for the matrix A only the first
block rows are updated. Thus the update law for the matrix A
is limited to
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Noting the form of the matrix A, the co-state equations can be
expanded as

which produce the solutions at time k and k+1

Therefore, the update law for the block sub-matrices in A are:

The [D] represents the transpose of the pseudo-inverse of the
D matrix. The update laws for the matrices D and C can be
elaborated upon as follows:

where I is a matrix composed of the rxr identity matrix
augmented by additional zero row (if n> r) or additional zero
columns (if n < r). In light of considering the “natural
gradient,” an alternate update law in this case is

For the C matrix, the update equations can be written for each
block matrix as follows:

SUMMARY

The formulation of the blind signal processing in the context
of optimization subject to dynamic constraints is developed
and shown of the general nonlinear and linear discrete-time
cases. In building on our previous work focusing on
continuous-time dynamic modeling, this complete the
derivations for both continuous-time and discrete time
modeling of the “mixing” environment. Application of this
theory in simulation and in real-world environments has
shown considerable improvements in performance [7]. Audio
results will be presents at the conference in the pre-conference
tutorial. Further details are deferred to [7].
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