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ABSTRACT 
 
The paper discusses State Space Blind Source Recovery 
(BSR) for minimum phase and non-minimum phase mixtures 
of gaussian and non-gaussian distributions. The State Space 
Natural Gradient approach results in compact iterative update 
laws for BSR. Two separate state space algorithms for 
minimum phase and non-minimum phase mixing 
environments are presented. The advantages and 
disadvantages of both algorithms in the context of multiple 
source distribution mixtures are examined. The presented 
BSR algorithms require use of nonlinearities, which depend 
on the distribution of the unknown sources. We propose use 
of an adaptive non-linearity based on the batch kurtosis of the 
output. This renders the adaptive estimation of the demixing 
network to be completely blind.  
 

1. INTRODUCTION 
 
Blind Source Recovery (BSR) is an interesting autonomous 
(or unsupervised) learning problem that includes well-known 
adaptive signal processing problems of multi-channel Blind 
Source Separation (BSS) and Blind Source Deconvolution 
(BSD) with several potential engineering applications [2,3,6]. 
The BSR problem denotes recovering original sources from 
environments that may include convolution, transients, and 
even possible nonlinearity.  

The state space notion provides a compact representation, 
capable of handling both time delayed and filtered versions 
of signals in an organized manner [2,3,6]. Unlike the transfer 
function models of standard dynamic filters, the use of the 
state-space can result in several generalized, equivalent and 
efficient internal descriptions of a system. This allows for 
recovery of original sources independent from (and even in 
the absence of) environment identifiability, i.e. determining 
the exact (or a specific function of) parameters of the 
environment. There exist many adaptive network solutions 
(representations), which succeed in recovering the original 
signals even in the absence of precise identifiability, termed 
as recoverability [3,6]. Existence and constructions of a 
theoretical solution to the BSR problem can be easily derived 

using the state space, given a structure of the environment 
[1,3, and the references therein].  

Most of the mixtures encountered in practical BSR 
problems are from sources with a variety of non-gaussian 
distributions. On the other hand, most noise phenomena or 
unidentified sources are assumed to possess gaussian 
distributions. This results in practical situations, where one 
has to cope with multiple source distribution mixtures 
including gaussian distributions. We describe the use of 
linear state space models for these problems. 
 
2. ALGORITHMS FOR LINEAR DYNAMIC CASE 

 
In the linear dynamic case, the environment model is 
assumed to be of the state space form  

( 1) ( ) ( )X k A X k B s ke e e e+ = +  (2.1) 

( ) ( ) ( )m k C X k D s ke e e= +  (2.2) 
The proposed feedforward separating network has the 

state space form  
( 1)  ( )  ( )X k A X k B m k+ = +  (2.3) 

( )  ( )  ( )y k C X k D m k= +  (2.4) 
The existence of explicit solutions in this case has been 

shown by Salam et. al. [1,3, and the references therein]. This 
existence of solutions ensure that the network has the 
capacity to compensate for the environment and consequently 
recover the original signals. Recoverability can thus be 
ensured. 

 
2.1. Minimum Phase Systems 
 
For the linear state-space demixing of minimum phase 
environments, the update laws have been derived in [3,6]  
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The above derived update laws form a comprehensive 
algorithm and provide the update laws for the states, the co-
states and all the parametric matrices in the state space 
model. Note, that the states Xk are computed forward in time, 
while the co-states λk need to be computed backward in time. 
The invertibility of the state space is guaranteed if the matrix 
D is “invertible” [3]. In the above derived laws 

( )kη - represents the learning rate of the algorithm 
( )yϕ - represents an element-wise non-linearity acting 

individually on each component of the output vector y , 
where the optimal non-linearity depends on the stochastic 
distribution of sources to be separated, defined as 
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Note that the update laws provided above for determining 
the poles of the demixing system become non-causal for 
MIMO filtering structures. Practically this can be easily 
implemented using some time delay and buffer storage 
memory. A small latency in the BSR recovered signal is 
acceptable as long as the sample delay is fixed for all the 
recovered signals. Further, the update laws in (2.5) and (2.6) 
are only locally stable. The state estimation in the above 
update laws may be replaced by other state estimation 
methods, e.g., Kalman filter, RLS etc. [2].  

On the other hand, the update laws (2.7) and (2.8) require 
only causal, time forward computations and may be used for 
determining the transmission zeros of the [2,3,4]. Alternately, 
using FIR approximation of the demixing system, all the 
poles are set to zero and the demixing is achieved entirely by 
using an all zero model. For such an update, the matrices A 
and B are defined to be in the (controller) canonical form I 
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where  
Z – represents a zero matrix of appropriate size 
I – represents an identity matrix of appropriate size 
 
2.2. Non-minimum Phase Systems 
 
For the non-minimum phase mixing environment, the 
demixing system becomes unstable due to the need of having 
poles outside the unit circle for cancellation of the non-
minimum phase environment transmission zeros. In order to 
avoid this instability, the natural gradient algorithm may be 
derived with the constraint that the demixing system is a 
double-sided FIR filter. This algorithm requires both forward 
and backward in time propagation by the FIR filter rendering 

it to be non-causal. This setup can also be practically realized 
by using a delayed version of the algorithm. The algorithmic 
delay and the interim data storage requirements can be 
minimized by operating both forward and backward in time 
filters on the same indexed batch of observations and 
outputs. The double-sided FIR filters can adequately 
approximate IIR filters at least in the magnitude terms [5, and 
the reference therein] leading to determination of a demixing 
system with minimal assumptions. With these constraints the 
equations derived for iteratively estimating the zeros of the 
double-sided FIR demixing system are [5]  

[ ]( ) ( ) ( ) 'i iC k C k u k iη ϕ∆ = − −  (2.11) 

[ ]( ) ( ) ( ) 'D k D k u kη ϕ∆ = −  (2.12) 
where the matrix C is defined as  

[ ]1 2 1MC C C C
−

= �  (2.13) 
and u(k) represents a filter for information back propagation 
of output as 

( ) ' ( 1) ' ( )k A k C y kλ λ= + +  (2.14) 
( ) ' ( ) ' ( )u k B k D y kλ= +  (2.15) 

All the poles of the system are thus fixed at zero which leads 
to the definition of matrices A and B to be in controller 
canonical form (2.10). The algorithm requires the augmented 
matrix ˆ [ , ]W D C=  to be initialized as a non-singular matrix 
of polynomials [5]. 

 
3. SIMULATION RESULTS 

  
We present two simulation results with 3 × 3 IIR mixing 
environments, one for minimum phase while the other for 
non-minimum phase mixing environment. The environment 
models for both systems were represented using MIMO 
controller canonical state space form [3,4,6]. The demixing 
system is also formulated as a state-space network. For both 
simulations, the poles of the demixing network are set to zero 
i.e., the structure for matrices A and B is fixed (see (2.10)), 
whereas matrices C and D are adaptively updated.  

The convergence performance of the algorithm is 
measured using the multi-channel intersymbol interference 
benchmark, which is defined in [2,3] as 
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( ) ( )* ( )G z H z H z= represents Global Transfer Function,  

( ) [ , , , ]e e e eH z A B C D= –Transfer Function of Environment  
( ) [ , , , ]H z A B C D= –Transfer Function of Network,  

 
3.1. Choice of Nonlinearity 

 
As outlined above, the optimal nonlinearities for the update 
laws depend on the density function of the sources to be 



separated, which upon successful convergence of the 
algorithm is similar to the density of the separated outputs. 
We have used an adaptive nonlinearity, which relies on the 
batch kurtosis of the output of the demixing system. This 
nonlinearity, defined below, converges to the optimal non-
linearity for the demixing system as the network’s outputs 
approach stochastic independence.  
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where 4 ( )yκ  - batch kurtosis of the output signals 
 
3.2. Simulation I: Minimum Phase Mixing  
 
This simulation presents the results for a 3 × 3 minimum 
phase IIR filtering environment model 
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( )v k - additive gaussian noise 

The theoretical inverse of this IIR mixing environment 
will be an IIR filter of dimension 10 or larger. For the 
presented simulations all the poles were set to zero. The 
matrix C was initialized with very small random numbers 
with a variance of 0.1, while the matrix D was initialized to 
be non-singular. The number of taps per filter was chosen to 
be 31. Note for this equivariant minimum phase setup, any 
over-determination in the number of taps does not effect the 
performance of the algorithm. Presented in figures 1 & 2 are 
the instantaneous results after 20000 iterations with mixtures 
of multiple distributions, and use of adaptive non-linearity 
with the update laws (2.7) and (2.8). 

 
3.3. Simulation II: Non-minimum Phase Mixing  
 
This simulation presents the results for a 3 × 3 non-minimum 
phase IIR filtering environment model as in (2.18), where 
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(a) (b) 
Figure 1: (a) Minimum Phase Environment, (b) Theoretical Environment Inverse 

(a) (b) 
Figure 2: (a) Final Global Transfer Function (b) Estimated Demixing Network 
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(a) (b) 
Figure 3: (a) Non-minimum Phase Environment, (b) Theoretical Environment Inverse 

(a) (b) 
Figure 4: (a) Global Transfer Function, (b) Estimated Demixing Network 

 
The theoretical inverse of this IIR mixing environment 

will also be an IIR filter of dimension 10 or larger. Also two 
poles of the intended demixing network need to be outside 
the unit circle, making it an unstable filter. However, the 
network is implemented as a doubly finite FIR inverse filter 
with 41 taps and supplied with mixtures of multiple source 
distributions. Matrix Ŵ is initialized to have one unity tap in 
each diagonal filter, while other taps are set to small random 
numbers.  Instantaneous update results after 40,000 iterations 
are shown in Figures 3 and 4. The convergence for non-
minimum phase systems is however relatively slow with 
adaptive non-linearity. 

 
4. CONCLUSIONS 

 
This paper demonstrates the use of the State Space BSR 
algorithms for both minimum and non-minimum phase 
mixing environments. Both algorithms are able to converge 
for all evaluated mixtures of non-gaussian source 
distributions. The minimum phase algorithm provides 
equivariant performance, independent of over-estimation 
effects in the order of demixing model, even when one of the 
inputs is gaussian or “close to gaussian” (which may 
represent a combination of several unmodeled sources).  

The non-minimum phase algorithm is also able to 
converge for all non-gaussian distributions independent of 
the order of selected filter order, provided it is larger than the 
minimum required filter order. However, if the order is 
incorrectly over-estimated, the algorithm exhibits excessive 
tap noise behavior for only gaussian type distributions while 

it converges successfully for all other constituent non-
gaussian source distributions in a mixture.  
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