Failure Prognosis for Permanent Magnet AC Drives Based on Wavelet Analysis

Wesley G. Zanardelli, Elias G. Strangas, and Selin Aviyente
zanardel@egr.msu.edu strangas@egr.msu.edu aviyente@egr.msu.edu

- **Objectives**
 - Detection of non-catastrophic faults in Permanent Magnet AC machines which lead to reduced life and eventually failure
 - Stator Faults
 - Insulation failures
 - Resistance changes

- **Discrete Wavelet Transform (DWT)**
 - Wavelets have finite energy concentrated around a point which helps to localize irregularities in a signal
 - Can give a sparse representation of a fault
 - Can choose different basis functions (mother wavelets) to achieve the best results for a specific application
 - Coefficients can be realized using a filter bank
 - FIR filter coefficients \(h_i \) and \(h_j \) based on the scaling and wavelet functions

- **Undecimated Discrete Wavelet Transform (UDWT)**
 - Shift-invariant representation of the DWT
 - Realized using the "Algortihme à Trous", which omits downsampling and inserts zeros between filter coefficients at each successive scale

- **Linear Discriminant Analysis**
 \(D_k(x) = x_1a_{q1} + x_2a_{q2} + \ldots + x_Na_{qN} + a_{q+k} \quad k = 1,2,\ldots,K \)
 - Categorization of \(x_i \) into \(j \)
 - Iterative training procedure for the weighting coefficients makes adjustments to \(a_j \) and \(a_i \) following an initial guess, where
 \[D_j(x) = \max_{a_j, a_i} |D_j(x)||D_k(x)| \]
 - \(a_j(i+1) = a_j(i) + \alpha_j \)
 - \(a_i(i+1) = a_i(i) - \alpha_i \)
 - and \(\alpha \) is a gain constant

- **Faults Explored**
 - Series Resistance (5 and 10ms)
 - Intermittent increased series contact resistance
 - A normally closed switch and a resistance in parallel are added in series with one of the motor phases
 - Turn-to-Phase Short (5 and 10ms)
 - Insulation failure in the stator windings of the motor
 - A normally open switch is added between a winding and its corresponding phase

- **Analysis Methods**
 - Field oriented currents are used since the fundamental electrical frequency is not present
 - UDWT applied to measured q-axis current
 - Daubechies D4 wavelet used
 - Decomposition performed for 6 scales
 - Inception and clearing of faults are identified separately
 - Detection Algorithm
 - A threshold is applied to the weighted energy of the UDWT at each time instant
 - Threshold is set to 40% greater than the largest observed on healthy motors
 - Classification Algorithm

- **Experimental Setup**

- **Typical Results**

- **Algorithm Performance**

- **Conclusions**
 - Detection and classification of machine faults which manifest themselves in the stator current is achieved
 - Data from an exhaustive set of operating conditions is necessary to develop a robust algorithm

- **Linear discriminant analysis applied to the 64 samples beginning 8 samples prior to where detection occurred**