• Claim (Proof of Theorem 4.1, page 116): By repetition of of previous arguments, we know that for every a > 0, we can choose b > 0 such that $\Omega_b \subset B_a$.

Proof: It is enough to consider a < r. Let $\gamma = \min_{a \le \|x\| \le r} V(x)$ and take $b < \gamma$. Then, $\Omega_b = \{x \in B_r \mid V(x) \le b\}$ is in the interior of B_a . If this was not the case, there would be a point $p \in \Omega_b$ that lies in the region $a \le \|x\| \le r$. At this point $V(p) \ge \gamma > b$, which contradicts that fact that for $x \in \Omega_a$, $V(x) \le a < \gamma$.

• Claim (page 662): $\psi(s)$ is continuous, positive definite, and increasing. There is a class \mathcal{K} function $\alpha_1(s)$ such that $\alpha_1(s) \leq k\psi(s)$ with 0 < k < 1.

Proof: Take

$$\alpha_1(s) = \frac{ks}{s+1}\psi(s), \quad \text{ for } s \ge 0$$

 α_1 is strictly increasing because s/(s+1) is strictly increasing and ψ is increasing and positive.

$$\frac{s}{s+1} \le 1 \implies \alpha_1(s) \le k\psi(s)$$

• Claim (page 664): $\bar{\delta}(\varepsilon)$ is positive definite, nondecreasing, but not necessarily continuous. There is a class \mathcal{K} function $\zeta(r)$ such that $\zeta(r) \leq k\bar{\delta}(r)$ with 0 < k < 1.

Proof: Note from the last line of page 663 that $\bar{\delta}(\varepsilon) \leq \varepsilon$. Let

$$\zeta(s) = k \int_0^s e^{-\sigma} \bar{\delta}(\sigma) \ d\sigma$$

Because $\bar{\delta}$ is monotone, it is Riemann integrable. Because the product of two Riemann integrable functions is Riemann integrable, $e^{-\sigma}\bar{\delta}(\sigma)$ is Riemann integrable.

$$\zeta(s) - \zeta(r) = k \int_{r}^{s} e^{-\sigma} \bar{\delta}(\sigma) \, d\sigma$$

 ζ is continuous because

$$|\zeta(s) - \zeta(r)| \le k\varepsilon |r - s$$

 ζ is strictly increasing because $e^{-\sigma}\bar{\delta}(\sigma) > 0$ for all $\sigma > 0$. Finally, because $\bar{\delta}$ is nondecreasing

$$\bar{\delta}(\sigma) \le \bar{\delta}(s^-) \le \bar{\delta}(s) \le \bar{\delta}(s^+), \quad \text{for } 0 < \sigma < s$$

where $\bar{\delta}(s^{-})$ and $\bar{\delta}(s^{+})$ are the left and right limits of $\bar{\delta}$ at s.

$$\zeta(s) \le k \int_0^s e^{-\sigma} \bar{\delta}(s) \ d\sigma = k(1 - e^{-s}) \bar{\delta}(s) \le k \bar{\delta}(s)$$